
Version 1.44 (/updates) is now available! Read about the new features and fixes from March. ×

TOPICS GCC on Linux

 (https://github.com/Microsoft/vscode-docs/blob/master/docs/cpp/config-linux.md)Using C++ on Linux in VS Code
In this tutorial, you will configure Visual Studio Code to use the GCC C++ compiler (g++) and GDB debugger on Linux. GCC stands for GNU Compiler Collection; GDB is the GNU debugger.

After configuring VS Code, you will compile and debug a simple C++ program in VS Code. This tutorial does not teach you GCC, GDB, Ubuntu or the C++ language. For those subjects, there are
many good resources available on the Web.

If you have trouble, feel free to file an issue for this tutorial in the VS Code documentation repository (https://github.com/Microsoft/vscode-docs/issues).

Prerequisites
To successfully complete this tutorial, you must do the following:

1. Install Visual Studio Code (/download).

2. Install the C++ extension for VS Code (https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools). You can install the C/C++ extension by searching for 'c++' in the
Extensions view (Ctrl+Shift+X).

Ensure GCC is installed

Although you'll use VS Code to edit your source code, you'll compile the source code on Linux using the g++ compiler. You'll also use GDB to debug. These tools are not installed by default on
Ubuntu, so you have to install them. Fortunately, that's easy.

First, check to see whether GCC is already installed. To verify whether it is, open a Terminal window and enter the following command:

gcc -v

If GCC isn't installed, run the following command from the terminal window to update the Ubuntu package lists. An out-of-date Linux distribution can sometimes interfere with attempts to install
new packages.

sudo apt-get update

Next install the GNU compiler tools and the GDB debugger with this command:

sudo apt-get install build-essential gdb

Create Hello World
From the terminal window, create an empty folder called projects to store your VS Code projects. Then create a subfolder called helloworld , navigate into it, and open VS Code in that folder
by entering the following commands:

mkdir projects
cd projects
mkdir helloworld
cd helloworld
code .

The code . command opens VS Code in the current working folder, which becomes your "workspace". As you go through the tutorial, you will create three files in a .vscode folder in the
workspace:

tasks.json (compiler build settings)
launch.json (debugger settings)
c_cpp_properties.json (compiler path and IntelliSense settings)

Add hello world source code file

In the File Explorer title bar, select New File and name the file helloworld.cpp .

✏

https://code.visualstudio.com/updates
https://github.com/Microsoft/vscode-docs/blob/master/docs/cpp/config-linux.md
https://github.com/Microsoft/vscode-docs/issues
https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools

Paste in the following source code:

#include <iostream>
#include <vector>
#include <string>

using namespace std;

int main()
{
 vector<string> msg {"Hello", "C++", "World", "from", "VS Code", "and the C++ extension!"};

 for (const string& word : msg)
 {
 cout << word << " ";
 }
 cout << endl;
}

Now press Ctrl+S to save the file. Notice that your files are listed in the File Explorer view (Ctrl+Shift+E) in the side bar of VS Code:

You can also enable Auto Save (/docs/editor/codebasics#_saveauto-save) to automatically save your file changes, by checking Auto Save in the main File menu.

The Activity Bar on the edge of Visual Studio Code lets you open different views such as Search, Source Control, and Run. You'll look at the Run view later in this tutorial. You can find out more
about the other views in the VS Code User Interface documentation (/docs/getstarted/userinterface).

Note: When you save or open a C++ file, you may see a notification from the C/C++ extension about the availability of an Insiders version, which lets you test new features and fixes. You can
ignore this notification by selecting the X (Clear Notification).

Explore IntelliSense
In the helloworld.cpp file, hover over vector or string to see type information. After the declaration of the msg variable, start typing msg. as you would when calling a member function.
You should immediately see a completion list that shows all the member functions, and a window that shows the type information for the msg object:

https://code.visualstudio.com/docs/editor/codebasics#_saveauto-save
https://code.visualstudio.com/docs/getstarted/userinterface

You can press the Tab key to insert the selected member. Then, when you add the opening parenthesis, you'll see information about arguments that the function requires.

Build helloworld.cpp
Next, you'll create a tasks.json file to tell VS Code how to build (compile) the program. This task will invoke the g++ compiler to create an executable file from the source code.

It's important to have helloworld.cpp open in the editor because the next step uses the active file in the editor for context to create the build task in the next step.

From the main menu, choose Terminal > Configure Default Build Task. A dropdown appears showing various predefined build tasks for C++ compilers. Choose C/C++: g++ build active file.

This will create a tasks.json file in a .vscode folder and open it in the editor.

Your new tasks.json file should look similar to the JSON below:

{
 "version": "2.0.0",
 "tasks": [
 {
 "type": "shell",
 "label": "g++ build active file",
 "command": "/usr/bin/g++",
 "args": ["-g", "${file}", "-o", "${fileDirname}/${fileBasenameNoExtension}"],
 "options": {
 "cwd": "/usr/bin"
 },
 "problemMatcher": ["$gcc"],
 "group": {
 "kind": "build",
 "isDefault": true
 }
 }
]
}

Note: You can learn more about task.json variables in the variables reference (/docs/editor/variables-reference).

The command setting specifies the program to run; in this case that is g++. The args array specifies the command-line arguments that will be passed to g++. These arguments must be
specified in the order expected by the compiler.

This task tells g++ to take the active file (${file}), compile it, and create an executable file in the current directory (${fileDirname}) with the same name as the active file but without an
extension (${fileBasenameNoExtension}), resulting in helloworld for our example.

The label value is what you will see in the tasks list; you can name this whatever you like.

The "isDefault": true value in the group object specifies that this task will be run when you press Ctrl+Shift+B . This property is for convenience only; if you set it to false, you can still run it
from the Terminal menu with Tasks: Run Build Task.

Running the build

1. Go back to helloworld.cpp . Your task builds the active file and you want to build helloworld.cpp .

2. To run the build task defined in tasks.json , press Ctrl+Shift+B or from the Terminal main menu choose Run Build Task.

3. When the task starts, you should see the Integrated Terminal panel appear below the source code editor. After the task completes, the terminal shows output from the compiler that
indicates whether the build succeeded or failed. For a successful g++ build, the output looks something like this:

4. Create a new terminal using the + button and you'll have a bash terminal running in the context of WSL with the helloworld folder as the working directory. Run ls and you should now
see the executable helloworld (no file extension).

5. You can run helloworld in the terminal by typing ./helloworld .

Modifying tasks.json

You can modify your tasks.json to build multiple C++ files by using an argument like "${workspaceFolder}/*.cpp" instead of ${file} . You can also modify the output filename by replacing
"${fileDirname}/${fileBasenameNoExtension}" with a hard-coded filename (for example 'helloworld.out').

Debug helloworld.cpp
Next, you'll create a launch.json file to configure VS Code to launch the GDB debugger when you press F5 to debug the program.

From the main menu, choose Run > Add Configuration... and then choose C++ (GDB/LLDB).

You'll then see a dropdown for various predefined debugging configurations. Choose g++ build and debug active file.

https://code.visualstudio.com/docs/editor/variables-reference

VS Code creates a launch.json file, opens it in the editor, and builds and runs 'helloworld'.

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "g++ build and debug active file",
 "type": "cppdbg",
 "request": "launch",
 "program": "${fileDirname}/${fileBasenameNoExtension}",
 "args": [],
 "stopAtEntry": false,
 "cwd": "${workspaceFolder}",
 "environment": [],
 "externalConsole": false,
 "MIMode": "gdb",
 "setupCommands": [
 {
 "description": "Enable pretty-printing for gdb",
 "text": "-enable-pretty-printing",
 "ignoreFailures": true
 }
],
 "preLaunchTask": "g++ build active file",
 "miDebuggerPath": "/usr/bin/gdb"
 }
]
}

In the JSON above, program specifies the program you want to debug. Here it is set to the active file folder ${fileDirname} and active filename without an extension
${fileBasenameNoExtension} , which if helloworld.cpp is the active file will be helloworld .

By default, the C++ extension won't add any breakpoints to your source code and the stopAtEntry value is set to false .

Change the stopAtEntry value to true to cause the debugger to stop on the main method when you start debugging.

Start a debugging session

1. Go back to helloworld.cpp so that it is the active file.
2. Press F5 or from the main menu choose Run > Start Debugging. Before you start stepping through the code, let's take a moment to notice several changes in the user interface:

The Integrated Terminal appears at the bottom of the source code editor. In the Debug Output tab, you see output that indicates the debugger is up and running.

The editor highlights the first statement in the main method. This is a breakpoint that the C++ extension automatically sets for you:

The Run view on the left shows debugging information. You'll see an example later in the tutorial.

At the top of the code editor, a debugging control panel appears. You can move this around the screen by grabbing the dots on the left side.

Step through the code
Now you're ready to start stepping through the code.

1. Click or press the Step over icon in the debugging control panel.

This will advance program execution to the first line of the for loop, and skip over all the internal function calls within the vector and string classes that are invoked when the msg
variable is created and initialized. Notice the change in the Variables window on the side.

2. Press Step over again to advance to the next statement in this program (skipping over all the internal code that is executed to initialize the loop). Now, the Variables window shows
information about the loop variables.

3. Press Step over again to execute the cout statement. (Note that as of the March 2019 release, the C++ extension does not print any output to the Debug Console until the last cout
executes.)

4. If you like, you can keep pressing Step over until all the words in the vector have been printed to the console. But if you are curious, try pressing the Step Into button to step through
source code in the C++ standard library!

To return to your own code, one way is to keep pressing Step over. Another way is to set a breakpoint in your code by switching to the helloworld.cpp tab in the code editor, putting the
insertion point somewhere on the cout statement inside the loop, and pressing F9 . A red dot appears in the gutter on the left to indicate that a breakpoint has been set on this line.

Then press F5 to start execution from the current line in the standard library header. Execution will break on cout . If you like, you can press F9 again to toggle off the breakpoint.

When the loop has completed, you can see the output in the Debug Console tab of the integrated terminal, along with some other diagnostic information that is output by GDB.

Set a watch
To keep track of the value of a variable as your program executes, set a watch on the variable.

1. Place the insertion point inside the loop. In the Watch window, click the plus sign and in the text box, type word , which is the name of the loop variable. Now view the Watch window as
you step through the loop.

2. To quickly view the value of any variable while execution is paused on a breakpoint, you can hover over it with the mouse pointer.

C/C++ configurations
If you want more control over the C/C++ extension, you can create a c_cpp_properties.json file, which will allow you to change settings such as the path to the compiler, include paths, C++
standard (default is C++17), and more.

You can view the C/C++ configuration UI by running the command C/C++: Edit Configurations (UI) from the Command Palette (Ctrl+Shift+P).

This opens the C/C++ Configurations page. When you make changes here, VS Code writes them to a file called c_cpp_properties.json in the .vscode folder.

You only need to modify the Include path setting if your program includes header files that are not in your workspace or in the standard library path.

Visual Studio Code places these settings in .vscode/c_cpp_properties.json . If you open that file directly, it should look something like this:

{
 "configurations": [
 {
 "name": "Linux",
 "includePath": ["${workspaceFolder}/**"],
 "defines": [],
 "compilerPath": "/usr/bin/gcc",
 "cStandard": "c11",
 "cppStandard": "c++17",
 "intelliSenseMode": "clang-x64"
 }
],
 "version": 4
}

Reusing your C++ configuration
VS Code is now configured to use gcc on Linux. The configuration applies to the current workspace. To reuse the configuration, just copy the JSON files to a .vscode folder in a new project
folder (workspace) and change the names of the source file(s) and executable as needed.

Troubleshooting

Compiler and linking errors

The most common cause of errors (such as undefined _main , or attempting to link with file built for unknown-unsupported file format , and so on) occurs when helloworld.cpp is
not the active file when you start a build or start debugging. This is because the compiler is trying to compile something that isn't source code, like your launch.json , tasks.json , or
c_cpp_properties.json file.

Next steps
Explore the VS Code User Guide (/docs/editor/codebasics).
Review the Overview of the C++ extension (/docs/languages/cpp).
Create a new workspace, copy your .json files to it, adjust the necessary settings for the new workspace path, program name, and so on, and start coding!

Was this documentation helpful?

Yes No

3/19/2020

IN THIS ARTICLE

Prerequisites

Create Hello World

https://code.visualstudio.com/docs/editor/codebasics
https://code.visualstudio.com/docs/languages/cpp

Tweet
this
link

(https://twitter.com/intent/tweet?original_referer=https://code.visualstudio.com/docs/cpp/config-
linux&ref_src=twsrc%5Etfw&text=Get%20Started%20with%20C++%20on%20Linux%20in%20Visual%20Studio%20Code&tw_p=tweetbutton&url=https://code.visualstudio.com/docs/cpp/
linux&via=code)

Subscribe(/feed.xml)

Ask questions(https://stackoverflow.com/questions/tagged/vscode)

Follow @code(https://go.microsoft.com/fwlink/?LinkID=533687)

Request features(https://go.microsoft.com/fwlink/?LinkID=533482)

Report issues(https://www.github.com/Microsoft/vscode/issues)

Watch videos(https://www.youtube.com/channel/UCs5Y5_7XK8HLDX0SLNwkd3w)

Explore IntelliSense

Build helloworld.cpp

Debug helloworld.cpp

Step through the code

Set a watch

C/C++ configurations

Reusing your C++ configuration

Troubleshooting

Next steps

Hello from Seattle. Follow @code (https://go.microsoft.com/fwlink/?LinkID=533687) StarStar 94,13394,133

Support (https://support.microsoft.com/en-us/getsupport?wf=0&tenant=ClassicCommercial&oaspworkflow=start_1.0.0.0&locale=en-us&supportregion=en-us&pesid=16064&ccsid=636196895839595242)
Privacy (https://privacy.microsoft.com/en-us/privacystatement) Terms of Use (https://www.microsoft.com/en-us/legal/intellectualproperty/copyright/default.aspx) License (/License)

 (https://www.microsoft.com)

© 2020 Microsoft

https://twitter.com/intent/tweet?original_referer=https://code.visualstudio.com/docs/cpp/config-linux&ref_src=twsrc%5Etfw&text=Get%20Started%20with%20C++%20on%20Linux%20in%20Visual%20Studio%20Code&tw_p=tweetbutton&url=https://code.visualstudio.com/docs/cpp/config-linux&via=code
https://code.visualstudio.com/feed.xml
https://stackoverflow.com/questions/tagged/vscode
https://go.microsoft.com/fwlink/?LinkID=533687
https://go.microsoft.com/fwlink/?LinkID=533482
https://www.github.com/Microsoft/vscode/issues
https://www.youtube.com/channel/UCs5Y5_7XK8HLDX0SLNwkd3w
https://go.microsoft.com/fwlink/?LinkID=533687
https://github.com/Microsoft/vscode/
https://github.com/Microsoft/vscode/stargazers
https://support.microsoft.com/en-us/getsupport?wf=0&tenant=ClassicCommercial&oaspworkflow=start_1.0.0.0&locale=en-us&supportregion=en-us&pesid=16064&ccsid=636196895839595242
https://privacy.microsoft.com/en-us/privacystatement
https://www.microsoft.com/en-us/legal/intellectualproperty/copyright/default.aspx
https://code.visualstudio.com/License
https://www.microsoft.com/

