
PostgreSQL 7.1 Developer’s Guide

The PostgreSQL Global Development Group

PostgreSQL 7.1 Developer’s Guide
by The PostgreSQL Global Development Group
Copyright © 1996-2001 by PostgreSQL Global Development Group

 This document contains assorted information that can be of use to
PostgreSQL
 developers.

Legal Notice

PostgreSQL

 is Copyright © 1996-2001 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the University of

California below.

Postgres95

 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement

is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,

INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE

AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED

HEREUNDER IS ON AN "AS-IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE

MAINTAINANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

i

Table of Contents

Table of Contents . i
List of Tables . ii
List of Examples . iii
Chapter 1. Postgres Source Code. 1

1.1. Formatting. 1
Chapter 2. Overview of PostgreSQL Internals. 2

2.1. The Path of a Query . 2
2.2. How Connections are Established . 2
2.3. The Parser Stage . 3

2.3.1. Parser . 3
2.3.2. Transformation Process. 4

2.4. The Postgres Rule System . 5
2.4.1. The Rewrite System . 5

2.5. Planner/Optimizer . 6
2.5.1. Generating Possible Plans . 6
2.5.2. Data Structure of the Plan . 7

2.6. Executor. 8
Chapter 3. System Catalogs . 9

3.1. Overview . 9
3.2. pg_aggregate . 10
3.3. pg_attrdef . 11
3.4. pg_attribute . 11
3.5. pg_class . 14
3.6. pg_database . 16
3.7. pg_description . 17
3.8. pg_group . 17
3.9. pg_index. 18
3.10. pg_inherits . 19
3.11. pg_language. 19
3.12. pg_operator . 20
3.13. pg_proc . 21
3.14. pg_relcheck . 23
3.15. pg_shadow . 23
3.16. pg_type. 24

Chapter 4. Frontend/Backend Protocol . 29
4.1. Overview . 29
4.2. Protocol . 29

4.2.1. Start-up . 30
4.2.2. Query. 31
4.2.3. Function Call . 32
4.2.4. Notification Responses . 33
4.2.5. Cancelling Requests in Progress . 33
4.2.6. Termination . 34

4.3. Message Data Types . 34
4.4. Message Formats. 35

Chapter 5. gcc Default Optimizations . 43
Chapter 6. BKI Backend Interface . 44

6.1. BKI File Format . 44

ii

6.2. BKI Commands . 44
6.3. Example . 45

Chapter 7. Page Files . 46
Chapter 8. Genetic Query Optimization . 48

8.1. Query Handling as a Complex Optimization Problem . 48
8.2. Genetic Algorithms (GA) . 48
8.3. Genetic Query Optimization (GEQO) in Postgres. 49

8.3.1. Future Implementation Tasks for PostgreSQL GEQO . 50
References . 50

Bibliography . 51
SQL Reference Books . 51
PostgreSQL-Specific Documentation. 51
Proceedings and Articles . 52

Appendix DG1. The CVS Repository . 53
DG1.1. Getting The Source Via Anonymous CVS . 53
DG1.2. CVS Tree Organization . 54
DG1.3. Getting The Source Via CVSup. 56

DG1.3.1. Preparing A CVSup Client System. 56
DG1.3.2. Running a CVSup Client . 56
DG1.3.3. Installing CVSup . 58
DG1.3.4. Installation from Sources. 59

Appendix DG2. Documentation . 61
DG2.1. DocBook. 61
DG2.2. Toolsets . 61

DG2.2.1. Linux RPM Installation . 62
DG2.2.2. FreeBSD Installation . 63
DG2.2.3. Debian Packages . 63
DG2.2.4. Manual Installation from Source . 63

DG2.3. Building The Documentation . 65
DG2.3.1. HTML . 66
DG2.3.2. Manpages . 66
DG2.3.3. Hardcopy Generation. 66
DG2.3.4. Plain Text Files . 70

DG2.4. Documentation Authoring . 70
DG2.4.1. Emacs/PSGML . 70
DG2.4.2. Other Emacs modes . 72

iii

List of Tables
3-1. System Catalogs ..9
3-2. pg_aggregate Columns ..10
3-3. pg_attrdef Columns ...11
3-4. pg_attribute Columns ..11
3-5. pg_class Columns..12
3-6. pg_database Columns..14
3-7. pg_description Columns..14
3-8. pg_group Columns ..15
3-9. pg_index Columns...15
3-10. pg_inherits Columns..16
3-11. pg_language Columns ...16
3-12. pg_operator Columns ..17
3-13. pg_proc Columns ..18
3-14. pg_relcheck Columns ..19
3-15. pg_shadow Columns ...19
3-16. pg_type Columns...20
7-1. Sample Page Layout..41

iv

List of Examples
2-1. A Simple Select...4

1

Chapter 1. Postgres Source Code

1.1. Formatting
 Source code formatting uses a 4 column tab spacing, currently with tabs preserved (i.e. tabs are not
expanded to spaces).

 For emacs, add the following (or something similar) to your ~/.emacs initialization file:

;; check for files with a path containing "postgres" or "pgsql"
(setq auto-mode-alist (cons ’("\\(postgres\\|pgsql\\).*\\.[ch]\\’" .
pgsql-c-mode) auto-mode-alist))
(setq auto-mode-alist (cons ’("\\(postgres\\|pgsql\\).*\\.cc\\’" .
pgsql-c-mode) auto-mode-alist))

(defun pgsql-c-mode ()
 ;; sets up formatting for Postgres C code
 (interactive)
 (c-mode)
 (setq-default tab-width 4)
 (c-set-style "bsd") ; set c-basic-offset to 4, plus other stuff
 (c-set-offset ’case-label ’+) ; tweak case indent to match PG custom
 (setq indent-tabs-mode t)) ; make sure we keep tabs when indenting

 For vi, your ~/.vimrc or equivalent file should contain the following:

set tabstop=4

 or equivalently from within vi, try

:set ts=4

 The text browsing tools more and less can be invoked as

more -x4
less -x4

2

Chapter 2. Overview of PostgreSQL Internals
Author: This chapter originally appeared as a part of Simkovics, 1998, Stefan Simkovics’ Master’s
Thesis prepared at Vienna University of Technology under the direction of O.Univ.Prof.Dr. Georg
Gottlob and Univ.Ass. Mag. Katrin Seyr.

 This chapter gives an overview of the internal structure of the backend of Postgres. After having read
the following sections you should have an idea of how a query is processed. Don’t expect a detailed
description here (I think such a description dealing with all data structures and functions used within
Postgres would exceed 1000 pages!). This chapter is intended to help understanding the general control
and data flow within the backend from receiving a query to sending the results.

2.1. The Path of a Query
 Here we give a short overview of the stages a query has to pass in order to obtain a result.

1. A connection from an application program to the Postgres server has to be established. The
application program transmits a query to the server and receives the results sent back by the server.

2. The parser stage checks the query transmitted by the application program (client) for correct syntax
and creates a query tree.

3. The rewrite system takes the query tree created by the parser stage and looks for any rules (stored in
the system catalogs) to apply to the querytree and performs the transformations given in the rule
bodies. One application of the rewrite system is given in the realization of views.

 Whenever a query against a view (i.e. a virtual table) is made, the rewrite system rewrites the
user’s query to a query that accesses the base tables given in the view definition instead.

4. The planner/optimizer takes the (rewritten) querytree and creates a queryplan that will be the input
to the executor.

 It does so by first creating all possible paths leading to the same result. For example if there is an
index on a relation to be scanned, there are two paths for the scan. One possibility is a simple
sequential scan and the other possibility is to use the index. Next the cost for the execution of each
plan is estimated and the cheapest plan is chosen and handed back.

5. The executor recursively steps through the plan tree and retrieves tuples in the way represented by
the plan. The executor makes use of the storage system while scanning relations, performs sorts and
joins, evaluates qualifications and finally hands back the tuples derived.

 In the following sections we will cover every of the above listed items in more detail to give a better
understanding on Postgres’s internal control and data structures.

2.2. How Connections are Established
 Postgres is implemented using a simple "process per-user" client/server model. In this model there is
one client process connected to exactly one server process. As we don’t know per se how many
connections will be made, we have to use a master process that spawns a new server process every time

Chapter 2. Overview of PostgreSQL Internals

3

a connection is requested. This master process is called postmaster and listens at a specified TCP/IP
port for incoming connections. Whenever a request for a connection is detected the postmaster
process spawns a new server process called postgres. The server tasks (postgres processes)
communicate with each other using semaphores and shared memory to ensure data integrity throughout
concurrent data access. Figure \ref{connection} illustrates the interaction of the master process
postmaster the server process postgres and a client application.

 The client process can either be the psql frontend (for interactive SQL queries) or any user application
implemented using the libpg library. Note that applications implemented using ecpg (the Postgres
embedded SQL preprocessor for C) also use this library.

 Once a connection is established the client process can send a query to the backend (server). The query
is transmitted using plain text, i.e. there is no parsing done in the frontend (client). The server parses the
query, creates an execution plan, executes the plan and returns the retrieved tuples to the client by
transmitting them over the established connection.

2.3. The Parser Stage
 The parser stage consists of two parts:

 The parser defined in gram.y and scan.l is built using the Unix tools yacc and lex.

 The transformation process does modifications and augmentations to the data structures returned by
the parser.

2.3.1. Parser

 The parser has to check the query string (which arrives as plain ASCII text) for valid syntax. If the
syntax is correct a parse tree is built up and handed back otherwise an error is returned. For the
implementation the well known Unix tools lex and yacc are used.

 The lexer is defined in the file scan.l and is responsible for recognizing identifiers, the SQL keywords
etc. For every keyword or identifier that is found, a token is generated and handed to the parser.

 The parser is defined in the file gram.y and consists of a set of grammar rules and actions that are
executed whenever a rule is fired. The code of the actions (which is actually C-code) is used to build up
the parse tree.

 The file scan.l is transformed to the C-source file scan.c using the program lex and gram.y is
transformed to gram.c using yacc. After these transformations have taken place a normal C-compiler
can be used to create the parser. Never make any changes to the generated C-files as they will be
overwritten the next time lex or yacc is called.

Note: The mentioned transformations and compilations are normally done automatically using the
makefiles shipped with the Postgres source distribution.

 A detailed description of yacc or the grammar rules given in gram.y would be beyond the scope of this
paper. There are many books and documents dealing with lex and yacc. You should be familiar with

Chapter 2. Overview of PostgreSQL Internals

4

yacc before you start to study the grammar given in gram.y otherwise you won’t understand what
happens there.

 For a better understanding of the data structures used in Postgres for the processing of a query we use
an example to illustrate the changes made to these data structures in every stage. This example contains
the following simple query that will be used in various descriptions and figures throughout the following
sections. The query assumes that the tables given in The Supplier Database have already been defined.

Example 2-1. A Simple Select

select s.sname, se.pno
 from supplier s, sells se
 where s.sno > 2 and s.sno = se.sno;

 Figure \ref{parsetree} shows the parse tree built by the grammar rules and actions given in gram.y for
the query given in Example 2-1 (without the operator tree for the where clause which is shown in figure
\ref{where_clause} because there was not enough space to show both data structures in one figure).

 The top node of the tree is a SelectStmt node. For every entry appearing in the from clause of the
SQL query a RangeVar node is created holding the name of the alias and a pointer to a RelExpr node
holding the name of the relation. All RangeVar nodes are collected in a list which is attached to the
field fromClause of the SelectStmt node.

 For every entry appearing in the select list of the SQL query a ResTarget node is created holding a
pointer to an Attr node. The Attr node holds the relation name of the entry and a pointer to a Value
node holding the name of the attribute. All ResTarget nodes are collected to a list which is connected
to the field targetList of the SelectStmt node.

 Figure \ref{where_clause} shows the operator tree built for the where clause of the SQL query given in
Example 2-1 which is attached to the field qual of the SelectStmt node. The top node of the operator
tree is an A_Expr node representing an AND operation. This node has two successors called lexpr and
rexpr pointing to two subtrees. The subtree attached to lexpr represents the qualification s.sno > 2
and the one attached to rexpr represents s.sno = se.sno. For every attribute an Attr node is
created holding the name of the relation and a pointer to a Value node holding the name of the attribute.
For the constant term appearing in the query a Const node is created holding the value.

2.3.2. Transformation Process

 The transformation process takes the tree handed back by the parser as input and steps recursively
through it. If a SelectStmt node is found, it is transformed to a Query node that will be the top most
node of the new data structure. Figure \ref{transformed} shows the transformed data structure (the part
for the transformed where clause is given in figure \ref{transformed_where} because there was not
enough space to show all parts in one figure).

 Now a check is made, if the relation names in the FROM clause are known to the system. For every
relation name that is present in the system catalogs a RTE node is created containing the relation name,
the alias name and the relation id. From now on the relation ids are used to refer to the relations given
in the query. All RTE nodes are collected in the range table entry list that is connected to the field
rtable of the Query node. If a name of a relation that is not known to the system is detected in the
query an error will be returned and the query processing will be aborted.

Chapter 2. Overview of PostgreSQL Internals

5

 Next it is checked if the attribute names used are contained in the relations given in the query. For
every attribute} that is found a TLE node is created holding a pointer to a Resdom node (which holds the
name of the column) and a pointer to a VAR node. There are two important numbers in the VAR node.
The field varno gives the position of the relation containing the current attribute} in the range table
entry list created above. The field varattno gives the position of the attribute within the relation. If the
name of an attribute cannot be found an error will be returned and the query processing will be aborted.

2.4. The Postgres Rule System
 Postgres supports a powerful rule system for the specification of views and ambiguous view updates.
Originally the Postgres rule system consisted of two implementations:

 The first one worked using tuple level processing and was implemented deep in the executor. The
rule system was called whenever an individual tuple had been accessed. This implementation was
removed in 1995 when the last official release of the Postgres project was transformed into
Postgres95.

 The second implementation of the rule system is a technique called query rewriting. The rewrite
system} is a module that exists between the parser stage and the planner/optimizer. This technique is
still implemented.

 For information on the syntax and creation of rules in the Postgres system refer to The PostgreSQL
User’s Guide.

2.4.1. The Rewrite System

 The query rewrite system is a module between the parser stage and the planner/optimizer. It processes
the tree handed back by the parser stage (which represents a user query) and if there is a rule present that
has to be applied to the query it rewrites the tree to an alternate form.

2.4.1.1. Techniques To Implement Views

 Now we will sketch the algorithm of the query rewrite system. For better illustration we show how to
implement views using rules as an example.

 Let the following rule be given:

 create rule view_rule
 as on select
 to test_view
 do instead
 select s.sname, p.pname
 from supplier s, sells se, part p
 where s.sno = se.sno and
 p.pno = se.pno;

Chapter 2. Overview of PostgreSQL Internals

6

 The given rule will be fired whenever a select against the relation test_view is detected. Instead of
selecting the tuples from test_view the select statement given in the action part of the rule is
executed.

 Let the following user-query against test_view be given:

 select sname
 from test_view
 where sname <> ’Smith’;

 Here is a list of the steps performed by the query rewrite system whenever a user-query against
test_view appears. (The following listing is a very informal description of the algorithm just intended
for basic understanding. For a detailed description refer to Stonebraker et al, 1989).

test_view Rewrite

1. Take the query given in the action part of the rule.

2. Adapt the targetlist to meet the number and order of attributes given in the user-query.

3. Add the qualification given in the where clause of the user-query to the qualification of the query
given in the action part of the rule.

 Given the rule definition above, the user-query will be rewritten to the following form (Note that the
rewriting is done on the internal representation of the user-query handed back by the parser stage but the
derived new data structure will represent the following query):

 select s.sname
 from supplier s, sells se, part p
 where s.sno = se.sno and
 p.pno = se.pno and
 s.sname <> ’Smith’;

2.5. Planner/Optimizer
 The task of the planner/optimizer is to create an optimal execution plan. It first combines all possible
ways of scanning and joining the relations that appear in a query. All the created paths lead to the same
result and it’s the task of the optimizer to estimate the cost of executing each path and find out which
one is the cheapest.

2.5.1. Generating Possible Plans

 The planner/optimizer decides which plans should be generated based upon the types of indices defined
on the relations appearing in a query. There is always the possibility of performing a sequential scan on
a relation, so a plan using only sequential scans is always created. Assume an index is defined on a
relation (for example a B-tree index) and a query contains the restriction relation.attribute OPR

Chapter 2. Overview of PostgreSQL Internals

7

constant. If relation.attribute happens to match the key of the B-tree index and OPR is anything
but ’<>’ another plan is created using the B-tree index to scan the relation. If there are further indices
present and the restrictions in the query happen to match a key of an index further plans will be
considered.

 After all feasible plans have been found for scanning single relations, plans for joining relations are
created. The planner/optimizer considers only joins between every two relations for which there exists a
corresponding join clause (i.e. for which a restriction like where rel1.attr1=rel2.attr2 exists) in
the where qualification. All possible plans are generated for every join pair considered by the
planner/optimizer. The three possible join strategies are:

 nested iteration join: The right relation is scanned once for every tuple found in the left relation. This
strategy is easy to implement but can be very time consuming.

 merge sort join: Each relation is sorted on the join attributes before the join starts. Then the two
relations are merged together taking into account that both relations are ordered on the join attributes.
This kind of join is more attractive because every relation has to be scanned only once.

 hash join: the right relation is first hashed on its join attributes. Next the left relation is scanned and
the appropriate values of every tuple found are used as hash keys to locate the tuples in the right
relation.

2.5.2. Data Structure of the Plan

 Here we will give a little description of the nodes appearing in the plan. Figure \ref{plan} shows the
plan produced for the query in example \ref{simple_select}.

 The top node of the plan is a MergeJoin node that has two successors, one attached to the field
lefttree and the second attached to the field righttree. Each of the subnodes represents one
relation of the join. As mentioned above a merge sort join requires each relation to be sorted. That’s why
we find a Sort node in each subplan. The additional qualification given in the query (s.sno > 2) is
pushed down as far as possible and is attached to the qpqual field of the leaf SeqScan node of the
corresponding subplan.

 The list attached to the field mergeclauses of the MergeJoin node contains information about the
join attributes. The values 65000 and 65001 for the varno fields in the VAR nodes appearing in the
mergeclauses list (and also in the targetlist) mean that not the tuples of the current node should
be considered but the tuples of the next "deeper" nodes (i.e. the top nodes of the subplans) should be
used instead.

 Note that every Sort and SeqScan node appearing in figure \ref{plan} has got a targetlist but
because there was not enough space only the one for the MergeJoin node could be drawn.

 Another task performed by the planner/optimizer is fixing the operator ids in the Expr and Oper nodes.
As mentioned earlier, Postgres supports a variety of different data types and even user defined types can
be used. To be able to maintain the huge amount of functions and operators it is necessary to store them
in a system table. Each function and operator gets a unique operator id. According to the types of the
attributes used within the qualifications etc., the appropriate operator ids have to be used.

Chapter 2. Overview of PostgreSQL Internals

8

2.6. Executor
 The executor takes the plan handed back by the planner/optimizer and starts processing the top node. In
the case of our example (the query given in example \ref{simple_select}) the top node is a MergeJoin
node.

 Before any merge can be done two tuples have to be fetched (one from each subplan). So the executor
recursively calls itself to process the subplans (it starts with the subplan attached to lefttree). The
new top node (the top node of the left subplan) is a SeqScan node and again a tuple has to be fetched
before the node itself can be processed. The executor calls itself recursively another time for the subplan
attached to lefttree of the SeqScan node.

 Now the new top node is a Sort node. As a sort has to be done on the whole relation, the executor
starts fetching tuples from the Sort node’s subplan and sorts them into a temporary relation (in memory
or a file) when the Sort node is visited for the first time. (Further examinations of the Sort node will
always return just one tuple from the sorted temporary relation.)

 Every time the processing of the Sort node needs a new tuple the executor is recursively called for the
SeqScan node attached as subplan. The relation (internally referenced by the value given in the
scanrelid field) is scanned for the next tuple. If the tuple satisfies the qualification given by the tree
attached to qpqual it is handed back, otherwise the next tuple is fetched until the qualification is
satisfied. If the last tuple of the relation has been processed a NULL pointer is returned.

 After a tuple has been handed back by the lefttree of the MergeJoin the righttree is processed in
the same way. If both tuples are present the executor processes the MergeJoin node. Whenever a new
tuple from one of the subplans is needed a recursive call to the executor is performed to obtain it. If a
joined tuple could be created it is handed back and one complete processing of the plan tree has finished.

 Now the described steps are performed once for every tuple, until a NULL pointer is returned for the
processing of the MergeJoin node, indicating that we are finished.

9

Chapter 3. System Catalogs

3.1. Overview
 The system catalogs are the place where a relational database management system stores schema
metadata, such as information about tables and columns, and internal bookkeeping information.
PostgreSQL’s system catalogs are regular tables. You can drop and recreate the tables, add columns,
insert and update values, and severely mess up your system that way. Normally one never has to change
the system catalogs by hand, there are always SQL commands to do that. (For example, CREATE
DATABASE inserts a row into the pg_database catalog -- and actually creates the database on disk.)
There are some exceptions for esoteric operations, such as adding index access methods.

Table 3-1. System Catalogs

Catalog Name Purpose

pg_aggregate aggregate functions

pg_am index access methods

pg_amop access method operators

pg_amproc access method support procedures

pg_attrdef column default values

pg_attribute table columns (attributes, fields)

pg_class tables, indexes, sequences (�relations�)

pg_database databases

pg_description descriptions or comments on database objects

pg_group user groups

pg_index additional index information

pg_inheritproc (not used)

pg_inherits table inheritance hierarchy

pg_ipl (not used)

pg_language languages for writing functions

pg_largeobject large objects

pg_listener asynchronous notification

pg_opclass index access method operator classes

pg_operator operators

pg_proc functions and procedures

Chapter 3. System Catalogs

10

Catalog Name Purpose

pg_relcheck check constraints

pg_rewrite query rewriter rules

pg_shadow database users

pg_statistic optimizer statistics

pg_trigger triggers

pg_type data types

 More detailed documentation of most catalogs follow below. The catalogs that relate to index access
methods are explained in the Programmer’s Guide. Some catalogs don’t have any documentation, yet.

3.2. pg_aggregate
 pg_aggregate stores information about aggregate functions. An aggregate function is a function that
operates on a set of values (typically one column from each the row that matches a query condition) and
returns a single value computed from all these values. Typical aggregate functions are sum, count, and
max.

Table 3-2. pg_aggregate Columns

Name Type References Description

aggname name Name of the aggregate function

aggowner int4 pg_shadow.usesysid Owner (creator) of the aggregate
function

aggtransfn regproc (function) Transition function

aggfinalfn regproc (function) Final function

aggbasetype oid pg_type.oid The type on which this function
operates when invoked from SQL

aggtranstype oid pg_type.oid The type of the aggregate function’s
internal transition (state) data

aggfinaltype oid pg_type.oid The type of the result

agginitval text The initial value of the transition state.
This is a text field which will be cast to
the type of aggtranstype.

 New aggregate functions are registered with the CREATE AGGREGATE command. See the
Programmer’s Guide for more information about writing aggregate functions and the meaning of the
transition functions, etc.

 An aggregate function is identified through name and argument type. Hence aggname and aggname are
the composite primary key.

Chapter 3. System Catalogs

11

3.3. pg_attrdef
 This catalog stores column default values. The main information about columns is stored in
pg_attribute (see below). Only columns that explicitly specify a default value (when the table is
created or the column is added) will have an entry here.

Table 3-3. pg_attrdef Columns

Name Type References Description

adrelid oid pg_class.oid The table this column belongs to

adnum int2 The number of the column; see pg_attribute.pg_attnum

adbin text An internal representation of the column default value

adsrc text A human-readable representation of the default value

3.4. pg_attribute
 pg_attribute stores information about table columns. There will be exactly one pg_attribute row
for every column in every table in the database. (There will also be attribute entries for indexes and
other objects. See pg_class.)

 The term attribute is equivalent to column and is used for historical reasons.

Table 3-4. pg_attribute Columns

Name Type References Description

attrelid oid pg_class.oid The table this column belongs to

attname name Column name

atttypid oid pg_type.oid The data type of this column

attdispersion float4 attdispersion is the dispersion statistic of the column
(0.0 to 1.0), or zero if the statistic has not been calculated,
or -1.0 if VACUUM found that the column contains no
duplicate entries (in which case the dispersion should be
taken as 1.0/numberOfRows for the current table size). The
-1.0 hack is useful because the number of rows may be
updated more often than attdispersion is. We assume
that the column will retain its no-duplicate-entry property.

attlen int2 This is a copy of the pg_type.typlen for this column’s
type.

attnum int2 The number of the column. Ordinary columns are
numbered from 1 up. System columns, such as oid, have
(arbitrary) negative numbers.

attnelems int4 Number of dimensions, if the column is an array

Chapter 3. System Catalogs

12

Name Type References Description

attcacheoff int4 Always -1 in storage, but when loaded into a tuple
descriptor in memory this may be updated cache the offset
of the attribute within the tuple.

atttypmod int4 atttypmod records type-specific data supplied at table
creation time (for example, the maximum length of a
varchar column). It is passed to type-specific input and
output functions as the third argument. The value will
generally be -1 for types that do not need typmod.

attbyval bool A copy of pg_type.typbyval of this column’s type

attstorage char A copy of pg_type.typstorage of this column’s type

attisset bool If true, this attribute is a set. In that case, what is really
stored in the attribute is the OID of a tuple in the pg_proc
catalog. The pg_proc tuple contains the query string that
defines this set - i.e., the query to run to get the set. So the
atttypid (see above) refers to the type returned by this
query, but the actual length of this attribute is the length
(size) of an oid. --- At least this is the theory. All this is
probably quite broken these days.

attalign char A copy of pg_type.typalign of this column’s type

attnotnull bool This represents a NOT NULL constraint. It is possible to
change this field to enable or disable the constraint.

atthasdef bool This column has a default value, in which case there will
be a corresponding entry in the pg_attrdef catalog that
actually defines the value.

3.5. pg_class
 pg_class catalogues tables and mostly everything else that has columns or is otherwise similar to a
table. This includes indexes (but see pg_index), sequences, views, and some kinds of special relation
kinds. Below, when we mean all of these kinds of objects we speak of �relations�. Not all fields are
meaningful for all relation types.

Table 3-5. pg_class Columns

Name Type References Description

relname name Name of the table, index, view, etc.

reltype oid pg_type.oid The data type that corresponds to this table (not
functional, only set for system tables)

relowner int4 pg_shadow.usesysid Owner of the relation

relam oid pg_am.oid If this is an index, the access method used (btree,
hash, etc.)

Chapter 3. System Catalogs

13

Name Type References Description

relfilenode oid Name of the on-disk file of this relation

relpages int4 Size of the on-disk representation of this table in
pages (size BLCKSZ). This is only an
approximate value which is calculated during
vacuum.

reltuples int4 Number of tuples in the table. This is only an
estimate used by the planner, updated by
VACUUM.

reltoastrelid oid pg_class.oid Oid of the TOAST table associated with this
table, 0 if none. The TOAST table stores large
attributes �out of line� in a secondary table.

reltoastidxid oid pg_class.oid Oid of the index on the TOAST table for this
table, 0 if none

relhasindex bool True if this is a table and it has at least one index

relisshared bool XXX (This is not what it seems to be.)

relkind char ’r’ = ordinary table, ’i’ = index, ’S’ = sequence,
’v’ = view, ’s’ = special, ’t’ = secondary TOAST
table

relnatts int2 Number of columns in the relation, besides
system columns. There must be this many
corresponding entries in pg_attribute. See also
pg_attribute.attnum.

relchecks int2 Number of check constraints on the table; see
pg_relcheck catalog

reltriggers int2 Number of triggers on the table; see pg_trigger
catalog

relukeys int2 unused (Not the number of unique keys or
something.)

relfkeys int2 Number foreign keys on the table

relhaspkey bool unused (No, this does not say whether the table
has a primary key. It’s really unused.)

relhasrules bool Table has rules

relhassubclass bool At least one table inherits this one

relacl aclitem[] Access permissions. See the descriptions of
GRANT and REVOKE for details.

Chapter 3. System Catalogs

14

3.6. pg_database
 The pg_database catalog stores information about the available databases. The pg_database table is
shared between all databases of a cluster. Databases are created with the CREATE DATABASE.
Consult the Administrator’s Guide for details about the meaning of some of the parameters.

Table 3-6. pg_database Columns

Name Type References Description

datname name Database name

datdba int4 pg_shadow.usesysid Owner of the database, initially who created it

encoding int4 Character/multibyte encoding for this database

datistemplate bool If true then this database can be used in the
�TEMPLATE� clause of CREATE DATABASE to
create the new database as a clone of this one.

datallowconn bool If false then no one can connect to this database. This
is used to protect the template0 database from being
altered.

datlastsysoid oid Last oid in existence after the database was created;
useful particularly to pg_dump

datpath text If the database is stored at an alternative location then
this records the location. It’s either an environment
variable name or an absolute path, depending how it
was entered.

3.7. pg_description
 The pg_description table can store an optional description or comment for each database object.
Descriptions can be manipulated with the COMMENT command. Client applications can view the
descriptions by joining with this table. Many builtin system objects have comments associated with
them that are shown by psql’s \d commands.

Table 3-7. pg_description Columns

Name Type References Description

objoid oid any oid attribute The oid of the object this description pertains to

description text Arbitrary text that serves as the description of this object.

Chapter 3. System Catalogs

15

3.8. pg_group
 This catalog defines groups and stores what users belong to what groups. Groups are created with the
CREATE GROUP command. Consult the Administrator’s Guide for information about user permission
management.

Table 3-8. pg_group Columns

Name Type References Description

groname name Name of the group

grosysid int4 An arbitrary number to
identify this group

grolist int4[] pg_shadow.usesysid An array containing the
ids of the users in this
group

3.9. pg_index
 pg_index contains part of the information about indexes. The rest is mostly in pg_class.

Table 3-9. pg_index Columns

Name Type References Description

indexrelid oid pg_class.oid The oid of the pg_class entry for this index

indrelid oid pg_class.oid The oid of the pg_class entry for the table this
index is for

indproc oid pg_proc.oid The registered procedure if this is a functional
index

indkey int2vector pg_attribute.attnum This is an vector (array) of up to
INDEX_MAX_KEYS values that indicate which
table columns this index pertains to. For example
a value of 1 3 would mean that the first and the
third column make up the index key.

indclass oidvector pg_opclass.oid For each column in the index key this contains a
reference to the �operator class� to use. See
pg_opclass for details.

indisclus-
tered

bool unused

indislossy bool ???

indisunique bool If true, this is a unique index.

indisprimary bool If true, this index is a unique index that
represents the primary key of the table.

Chapter 3. System Catalogs

16

Name Type References Description

indreference oid unused

indpred text Query plan for partial index predicate (not
functional)

3.10. pg_inherits
 This catalog records information about table inheritance hierarchies.

Table 3-10. pg_inherits Columns

Name Type References Description

inhrelid oid pg_class.oid This is the reference to the subtable, that is, it records the fact that
the identified table is inherited from some other table.

inhparent oid pg_class.oid This is the reference to the parent table, from which the table
referenced by inhrelid inherited from.

inhseqno int4 If there is more than one subtable/parent pair (multiple
inheritance), this number tells the order in which the inherited
columns are to be arranged. The count starts at 1.

3.11. pg_language
 pg_language registers call interfaces or languages in which you can write functions or stored
procedures. See under CREATE LANGUAGE and in the Programmer’s Guide for more information
about language handlers.

Table 3-11. pg_language Columns

Name Type References Description

lanname name Name of the language (to be specified when creating a function)

lanispl bool This is false for internal languages (such as SQL) and true for
dynamically loaded language handler modules. It essentially
means that, if it is true, the language may be dropped.

lanpltrusted bool This is a trusted language. See under CREATE LANGUAGE
what this means. If this is an internal language (lanispl is
false) then this field is meaningless.

lanplcal-
lfoid

oid pg_proc.oid For non-internal languages this references the language handler,
which is a special function that is responsible for executing all
functions that are written in the particular language.

lancompiler text not used

Chapter 3. System Catalogs

17

3.12. pg_operator
 See CREATE OPERATOR and the Programmer’s Guide for details on these operator parameters.

Table 3-12. pg_operator Columns

Name Type References Description

oprname name Name of the operator

oprowner int4 pg_shadow.usesysid Owner (creator) of the operator

oprprec int2 unused

oprkind char ’b’ = infix (�both�), ’l’ = prefix (�left�), ’r’ = postfix
(�right�)

oprisleft bool unused

oprcanhash bool This operator supports hash joins.

oprleft oid pg_type.oid Type of the left operand

oprright oid pg_type.oid Type of the right operand

oprresult oid pg_type.oid Type of the result

oprcom oid pg_operator.oid Commutator of this operator, if any

oprnegate oid pg_operator.oid Negator of this operator, if any

oprlsortop oid pg_operator.oid If this operator supports merge joins, the operator
that sorts the type of the left-hand operand

oprrsortop oid pg_operator.oid If this operator supports merge joins, the operator
that sorts the type of the right-hand operand

oprcode regproc Function that implements this operator

oprrest regproc Restriction selectivity estimation function for this
operator

oprjoin regproc Join selectivity estimation function for this operator

Chapter 3. System Catalogs

18

3.13. pg_proc
 This catalog stores information about functions (or procedures). The description of CREATE
FUNCTION and the Programmer’s Guide contain more information about the meaning of some fields.

Table 3-13. pg_proc Columns

Name Type References Description

proname name Name of the function

proowner int4 pg_shadow.usesysid Owner (creator) of the function

prolang oid pg_language.oid Implementation language or call interface of this
function

proisinh bool unused

proistrusted bool not functional

proiscachable bool Function returns same result for same input values

proisstrict bool Function returns null if any call argument is null. In
that case the function won’t actually be called at all.
Functions that are not �strict� must be prepared to
handle null inputs.

pronargs int2 Number of arguments

proretset bool Function returns a set (probably not functional)

prorettype oid pg_type.oid Data type of the return value (0 if the function does
not return a value)

proargtypes oid-

vector

pg_type.oid A vector with the data types of the function
arguments

probyte_pct int4 dead code

properbyte_pct int4 dead code

propercall_pct int4 dead code

prooutin_ratio int4 dead code

prosrc text This tells the function handler how to invoke the
function. It might be the actual source code of the
function for interpreted languages, a link symbol, a
file name, or just about anything else, depending the
implementation language/call convention.

probin bytea ?

Chapter 3. System Catalogs

19

3.14. pg_relcheck
 This system catalog stores CHECK constraints on tables. (Column constraints are not treated specially.
Every column constraint is equivalent to some table constraint.) See under CREATE TABLE for more
information.

Table 3-14. pg_relcheck Columns

Name Type References Description

rcrelid oid pg_class.oid The table this check constraint is on

rcname name Constraint name

rcbin text An internal representation of the constraint expression

rcsrc text A human-readable representation of the consraint expression

Note: pg_class.relchecks needs to match up with the entries in this table.

3.15. pg_shadow
 pg_shadow contains information about database users. The name stems from the fact that this table
should not be readable by the public since it contains passwords. pg_user is a view on pg_shadow that
blanks out the password field.

 The Administrator’s Guide contains detailed information about user and permission management.

Table 3-15. pg_shadow Columns

Name Type References Description

usename name User name

usesysid int4 User id (arbitrary number used to reference this user)

usecreatedb bool User may create databases

usetrace bool not used

usesuper bool User is a superuser

usecatupd bool User may update system catalogs. (Even a superuser may
not do this unless this attribute is true.)

passwd text Password

valuntil abstime Account expiry time (only used for password authentication)

Chapter 3. System Catalogs

20

3.16. pg_type
Table 3-16. pg_type Columns

Name Type References Description

typname name Data type name

typowner int4 pg_shadow.usesysid Owner (creator) of the type

typlen int2 Length of the storage representation of the type, -1 if
variable length

typprtlen int2 unused

typbyval bool typbyval determines whether internal routines pass
a value of this type by value or by reference. Only
char, short, and int equivalent items can be passed
by value, so if the type is not 1, 2, or 4 bytes long,
Postgres does not have the option of passing by value
and so typbyval had better be false. Variable-length
types are always passed by reference. Note that
typbyval can be false even if the length would allow
pass-by-value; this is currently true for type float4,
for example.

typtype char typtype is b for a basic type and c for a catalog type
(i.e., a table). If typtype is c, typrelid is the OID
of the type’s entry in pg_class.

typisdefined bool ???

typdelim char Character that separates two values of this type when
parsing array input

typrelid oid pg_class.oid If this is a catalog type (see typtype), then this field
points to the pg_class entry that defines the
corresponding table. A table could theoretically be
used as a composite data type, but this is not fully
functional.

typelem oid pg_type.oid If typelem is not 0 then it identifies another row in
pg_type. The current type can then be subscripted
like an array yielding values of type typelem. A
non-zero typelem does not guarantee this type to be a
�real� array type; some ordinary fixed-length types can
also be subscripted (e.g., oidvector).
Variable-length types can not be turned into
pseudo-arrays like that. Hence, the way to determine
whether a type is a �true� array type is typelem != 0 and
typlen < 0.

typinput regproc Input function

Chapter 3. System Catalogs

21

Name Type References Description

typoutput regproc Output function

typreceive regproc unused

typsend regproc unused

typalign char typalign is the alignment required when storing a
value of this type. It applies to storage on disk as well
as most representations of the value inside Postgres.
When multiple values are stored consecutively, such
as in the representation of a complete row on disk,
padding is inserted before a datum of this type so that
it begins on the specified boundary. The alignment
reference is the beginning of the first datum in the
sequence.

 Possible values are:

’c’ = CHAR alignment, i.e., no alignment needed.

’s’ = SHORT alignment (2 bytes on most
machines).

’i’ = INT alignment (4 bytes on most machines).

’d’ = DOUBLE alignment (8 bytes on many
machines, but by no means all).

Note: For types used in system tables, it is
critical that the size and alignment defined in
pg_type agree with the way that the compiler
will lay out the field in a struct representing a
table row.

typstorage char typstorage tells for variable-length types (those
with typlen = -1) if the type is prepared for toasting
and what the default strategy for attributes of this
type should be. Possible values are

’p’: Value must always be stored plain.

 ’e’: Value can be stored in a �secondary� relation (if
relation has one, see pg_class.reltoastrelid).

’m’: Value can be stored compressed inline.

’x’: Value can be stored compressed inline or in
�secondary�.

 Note that ’m’ fields can also be moved out to
secondary storage, but only as a last resort (’e’ and
’x’ fields are moved first).

Chapter 3. System Catalogs

22

Name Type References Description

typdefault text ???

23

Chapter 4. Frontend/Backend Protocol
Note: Written by Phil Thompson (<phil@river-bank.demon.co.uk>). Updates for protocol 2.0 by
Tom Lane (<tgl@sss.pgh.pa.us>).

Postgres uses a message-based protocol for communication between frontends and backends. The
protocol is implemented over TCP/IP and also on Unix sockets. Postgres 6.3 introduced version
numbers into the protocol. This was done in such a way as to still allow connections from earlier
versions of frontends, but this document does not cover the protocol used by those earlier versions.

This document describes version 2.0 of the protocol, implemented in Postgres 6.4 and later.

Higher level features built on this protocol (for example, how libpq passes certain environment
variables after the connection is established) are covered elsewhere.

4.1. Overview
The three major components are the frontend (running on the client) and the postmaster and backend
(running on the server). The postmaster and backend have different roles but may be implemented by
the same executable.

A frontend sends a start-up packet to the postmaster. This includes the names of the user and the
database the user wants to connect to. The postmaster then uses this, and the information in the
pg_hba.conf file to determine what further authentication information it requires the frontend to send
(if any) and responds to the frontend accordingly.

The frontend then sends any required authentication information. Once the postmaster validates this it
responds to the frontend that it is authenticated and hands over the connection to a backend. The
backend then sends a message indicating successful start-up (normal case) or failure (for example, an
invalid database name).

Subsequent communications are query and result packets exchanged between the frontend and the
backend. The postmaster takes no further part in ordinary query/result communication. (However, the
postmaster is involved when the frontend wishes to cancel a query currently being executed by its
backend. Further details about that appear below.)

When the frontend wishes to disconnect it sends an appropriate packet and closes the connection without
waiting for a response for the backend.

Packets are sent as a data stream. The first byte determines what should be expected in the rest of the
packet. The exception is packets sent from a frontend to the postmaster, which comprise a packet length
then the packet itself. The difference is historical.

4.2. Protocol
This section describes the message flow. There are four different types of flows depending on the state
of the connection: start-up, query, function call, and termination. There are also special provisions for
notification responses and command cancellation, which can occur at any time after the start-up phase.

Chapter 4. Frontend/Backend Protocol

24

4.2.1. Start-up

Start-up is divided into an authentication phase and a backend start-up phase.

Initially, the frontend sends a StartupPacket. The postmaster uses this info and the contents of the
pg_hba.conf file to determine what authentication method the frontend must use. The postmaster then
responds with one of the following messages:

 ErrorResponse

 The postmaster then immediately closes the connection.

 AuthenticationOk

 The postmaster then hands over to the backend. The postmaster takes no further part in the
communication.

 AuthenticationKerberosV4

 The frontend must then take part in a Kerberos V4 authentication dialog (not described here) with
the postmaster. If this is successful, the postmaster responds with an AuthenticationOk, otherwise it
responds with an ErrorResponse.

 AuthenticationKerberosV5

 The frontend must then take part in a Kerberos V5 authentication dialog (not described here) with
the postmaster. If this is successful, the postmaster responds with an AuthenticationOk, otherwise it
responds with an ErrorResponse.

 AuthenticationUnencryptedPassword

 The frontend must then send an UnencryptedPasswordPacket. If this is the correct password, the
postmaster responds with an AuthenticationOk, otherwise it responds with an ErrorResponse.

 AuthenticationEncryptedPassword

 The frontend must then send an EncryptedPasswordPacket. If this is the correct password, the
postmaster responds with an AuthenticationOk, otherwise it responds with an ErrorResponse.

If the frontend does not support the authentication method requested by the postmaster, then it should
immediately close the connection.

After sending AuthenticationOk, the postmaster attempts to launch a backend process. Since this might
fail, or the backend might encounter a failure during start-up, the frontend must wait for the backend to
acknowledge successful start-up. The frontend should send no messages at this point. The possible
messages from the backend during this phase are:

 BackendKeyData

 This message is issued after successful backend start-up. It provides secret-key data that the
frontend must save if it wants to be able to issue cancel requests later. The frontend should not
respond to this message, but should continue listening for a ReadyForQuery message.

Chapter 4. Frontend/Backend Protocol

25

 ReadyForQuery

 Backend start-up is successful. The frontend may now issue query or function call messages.

 ErrorResponse

 Backend start-up failed. The connection is closed after sending this message.

 NoticeResponse

 A warning message has been issued. The frontend should display the message but continue
listening for ReadyForQuery or ErrorResponse.

The ReadyForQuery message is the same one that the backend will issue after each query cycle.
Depending on the coding needs of the frontend, it is reasonable to consider ReadyForQuery as starting a
query cycle (and then BackendKeyData indicates successful conclusion of the start-up phase), or to
consider ReadyForQuery as ending the start-up phase and each subsequent query cycle.

4.2.2. Query

A Query cycle is initiated by the frontend sending a Query message to the backend. The backend then
sends one or more response messages depending on the contents of the query command string, and
finally a ReadyForQuery response message. ReadyForQuery informs the frontend that it may safely
send a new query or function call.

The possible response messages from the backend are:

 CompletedResponse

 An SQL command completed normally.

 CopyInResponse

 The backend is ready to copy data from the frontend to a relation. The frontend should then send a
CopyDataRows message. The backend will then respond with a CompletedResponse message with
a tag of "COPY".

 CopyOutResponse

 The backend is ready to copy data from a relation to the frontend. It then sends a CopyDataRows
message, and then a CompletedResponse message with a tag of "COPY".

 CursorResponse

 The query was either an insert(l), delete(l), update(l), fetch(l) or a select(l) command. If the
transaction has been aborted then the backend sends a CompletedResponse message with a tag of
"*ABORT STATE*". Otherwise the following responses are sent.

 For an insert(l) command, the backend then sends a CompletedResponse message with a tag of
"INSERT oid rows" where rows is the number of rows inserted, and oid is the object ID of the
inserted row if rows is 1, otherwise oid is 0.

 For a delete(l) command, the backend then sends a CompletedResponse message with a tag of
"DELETE rows" where rows is the number of rows deleted.

Chapter 4. Frontend/Backend Protocol

26

 For an update(l) command, the backend then sends a CompletedResponse message with a tag of
"UPDATE rows" where rows is the number of rows deleted.

 For a fetch(l) or select(l) command, the backend sends a RowDescription message. This is then
followed by an AsciiRow or BinaryRow message (depending on whether a binary cursor was
specified) for each row being returned to the frontend. Finally, the backend sends a
CompletedResponse message with a tag of "SELECT".

 EmptyQueryResponse

 An empty query string was recognized. (The need to specially distinguish this case is historical.)

 ErrorResponse

 An error has occurred.

 ReadyForQuery

 Processing of the query string is complete. A separate message is sent to indicate this because the
query string may contain multiple SQL commands. (CompletedResponse marks the end of
processing one SQL command, not the whole string.) ReadyForQuery will always be sent, whether
processing terminates successfully or with an error.

 NoticeResponse

 A warning message has been issued in relation to the query. Notices are in addition to other
responses, i.e., the backend will continue processing the command.

A frontend must be prepared to accept ErrorResponse and NoticeResponse messages whenever it is
expecting any other type of message.

Actually, it is possible for NoticeResponse to arrive even when the frontend is not expecting any kind of
message, that is, the backend is nominally idle. (In particular, the backend can be commanded to
terminate by its postmaster. In that case it will send a NoticeResponse before closing the connection.) It
is recommended that the frontend check for such asynchronous notices just before issuing any new
command.

Also, if the frontend issues any listen(l) commands then it must be prepared to accept
NotificationResponse messages at any time; see below.

4.2.3. Function Call

A Function Call cycle is initiated by the frontend sending a FunctionCall message to the backend. The
backend then sends one or more response messages depending on the results of the function call, and
finally a ReadyForQuery response message. ReadyForQuery informs the frontend that it may safely
send a new query or function call.

The possible response messages from the backend are:

 ErrorResponse

 An error has occurred.

Chapter 4. Frontend/Backend Protocol

27

 FunctionResultResponse

 The function call was executed and returned a result.

 FunctionVoidResponse

 The function call was executed and returned no result.

 ReadyForQuery

 Processing of the function call is complete. ReadyForQuery will always be sent, whether
processing terminates successfully or with an error.

 NoticeResponse

 A warning message has been issued in relation to the function call. Notices are in addition to other
responses, i.e., the backend will continue processing the command.

A frontend must be prepared to accept ErrorResponse and NoticeResponse messages whenever it is
expecting any other type of message. Also, if it issues any listen(l) commands then it must be prepared
to accept NotificationResponse messages at any time; see below.

4.2.4. Notification Responses

If a frontend issues a listen(l) command, then the backend will send a NotificationResponse message
(not to be confused with NoticeResponse!) whenever a notify(l) command is executed for the same
notification name.

Notification responses are permitted at any point in the protocol (after start-up), except within another
backend message. Thus, the frontend must be prepared to recognize a NotificationResponse message
whenever it is expecting any message. Indeed, it should be able to handle NotificationResponse
messages even when it is not engaged in a query.

 NotificationResponse

 A notify(l) command has been executed for a name for which a previous listen(l) command was
executed. Notifications may be sent at any time.

It may be worth pointing out that the names used in listen and notify commands need not have anything
to do with names of relations (tables) in the SQL database. Notification names are simply arbitrarily
chosen condition names.

4.2.5. Cancelling Requests in Progress

During the processing of a query, the frontend may request cancellation of the query by sending an
appropriate request to the postmaster. The cancel request is not sent directly to the backend for reasons
of implementation efficiency: we don’t want to have the backend constantly checking for new input
from the frontend during query processing. Cancel requests should be relatively infrequent, so we make
them slightly cumbersome in order to avoid a penalty in the normal case.

To issue a cancel request, the frontend opens a new connection to the postmaster and sends a
CancelRequest message, rather than the StartupPacket message that would ordinarily be sent across a

Chapter 4. Frontend/Backend Protocol

28

new connection. The postmaster will process this request and then close the connection. For security
reasons, no direct reply is made to the cancel request message.

A CancelRequest message will be ignored unless it contains the same key data (PID and secret key)
passed to the frontend during connection start-up. If the request matches the PID and secret key for a
currently executing backend, the postmaster signals the backend to abort processing of the current query.

The cancellation signal may or may not have any effect --- for example, if it arrives after the backend
has finished processing the query, then it will have no effect. If the cancellation is effective, it results in
the current command being terminated early with an error message.

The upshot of all this is that for reasons of both security and efficiency, the frontend has no direct way to
tell whether a cancel request has succeeded. It must continue to wait for the backend to respond to the
query. Issuing a cancel simply improves the odds that the current query will finish soon, and improves
the odds that it will fail with an error message instead of succeeding.

Since the cancel request is sent to the postmaster and not across the regular frontend/backend
communication link, it is possible for the cancel request to be issued by any process, not just the
frontend whose query is to be canceled. This may have some benefits of flexibility in building
multiple-process applications. It also introduces a security risk, in that unauthorized persons might try to
cancel queries. The security risk is addressed by requiring a dynamically generated secret key to be
supplied in cancel requests.

4.2.6. Termination

The normal, graceful termination procedure is that the frontend sends a Terminate message and
immediately closes the connection. On receipt of the message, the backend immediately closes the
connection and terminates.

An ungraceful termination may occur due to software failure (i.e., core dump) at either end. If either
frontend or backend sees an unexpected closure of the connection, it should clean up and terminate. The
frontend has the option of launching a new backend by recontacting the postmaster, if it doesn’t want to
terminate itself.

4.3. Message Data Types
This section describes the base data types used in messages.

 Intn(i)

 An n bit integer in network byte order. If i is specified it is the literal value. Eg. Int16, Int32(42).

 LimStringn(s)

 A character array of exactly n bytes interpreted as a ’\0’ terminated string. The ’\0’ is omitted if
there is insufficient room. If s is specified it is the literal value. Eg. LimString32,
LimString64("user").

 String(s)

 A conventional C ’\0’ terminated string with no length limitation. If s is specified it is the literal
value. Eg. String, String("user").

Chapter 4. Frontend/Backend Protocol

29

Note: There is no predefined limit on the length of a string that can be returned by the
backend. Good coding strategy for a frontend is to use an expandable buffer so that anything
that fits in memory can be accepted. If that’s not feasible, read the full string and discard
trailing characters that don’t fit into your fixed-size buffer.

 Byten(c)

 Exactly n bytes. If c is specified it is the literal value. Eg. Byte, Byte1(’\n’).

4.4. Message Formats
This section describes the detailed format of each message. Each can be sent by either a frontend (F), a
postmaster/backend (B), or both (F & B).

AsciiRow (B)

 Byte1(’D’)

 Identifies the message as an ASCII data row. (A prior RowDescription message defines the
number of fields in the row and their data types.)

 Byten

 A bit map with one bit for each field in the row. The 1st field corresponds to bit 7 (MSB) of
the 1st byte, the 2nd field corresponds to bit 6 of the 1st byte, the 8th field corresponds to bit 0
(LSB) of the 1st byte, the 9th field corresponds to bit 7 of the 2nd byte, and so on. Each bit is
set if the value of the corresponding field is not NULL. If the number of fields is not a
multiple of 8, the remainder of the last byte in the bit map is wasted.

 Then, for each field with a non-NULL value, there is the following:

 Int32

 Specifies the size of the value of the field, including this size.

 Byten

 Specifies the value of the field itself in ASCII characters. n is the above size minus 4.
There is no trailing ’\0’ in the field data; the front end must add one if it wants one.

AuthenticationOk (B)

 Byte1(’R’)

 Identifies the message as an authentication request.

 Int32(0)

 Specifies that the authentication was successful.

Chapter 4. Frontend/Backend Protocol

30

AuthenticationKerberosV4 (B)

 Byte1(’R’)

 Identifies the message as an authentication request.

 Int32(1)

 Specifies that Kerberos V4 authentication is required.

AuthenticationKerberosV5 (B)

 Byte1(’R’)

 Identifies the message as an authentication request.

 Int32(2)

 Specifies that Kerberos V5 authentication is required.

AuthenticationUnencryptedPassword (B)

 Byte1(’R’)

 Identifies the message as an authentication request.

 Int32(3)

 Specifies that an unencrypted password is required.

AuthenticationEncryptedPassword (B)

 Byte1(’R’)

 Identifies the message as an authentication request.

 Int32(4)

 Specifies that an encrypted password is required.

 Byte2

 The salt to use when encrypting the password.

Chapter 4. Frontend/Backend Protocol

31

BackendKeyData (B)

 Byte1(’K’)

 Identifies the message as cancellation key data. The frontend must save these values if it
wishes to be able to issue CancelRequest messages later.

 Int32

 The process ID of this backend.

 Int32

 The secret key of this backend.

BinaryRow (B)

 Byte1(’B’)

 Identifies the message as a binary data row. (A prior RowDescription message defines the
number of fields in the row and their data types.)

 Byten

 A bit map with one bit for each field in the row. The 1st field corresponds to bit 7 (MSB) of
the 1st byte, the 2nd field corresponds to bit 6 of the 1st byte, the 8th field corresponds to bit 0
(LSB) of the 1st byte, the 9th field corresponds to bit 7 of the 2nd byte, and so on. Each bit is
set if the value of the corresponding field is not NULL. If the number of fields is not a
multiple of 8, the remainder of the last byte in the bit map is wasted.

 Then, for each field with a non-NULL value, there is the following:

 Int32

 Specifies the size of the value of the field, excluding this size.

 Byten

 Specifies the value of the field itself in binary format. n is the above size.

CancelRequest (F)

 Int32(16)

 The size of the packet in bytes.

 Int32(80877102)

 The cancel request code. The value is chosen to contain "1234" in the most significant 16 bits,
and "5678" in the least 16 significant bits. (To avoid confusion, this code must not be the same
as any protocol version number.)

Chapter 4. Frontend/Backend Protocol

32

 Int32

 The process ID of the target backend.

 Int32

 The secret key for the target backend.

CompletedResponse (B)

 Byte1(’C’)

 Identifies the message as a completed response.

 String

 The command tag. This is usually (but not always) a single word that identifies which SQL
command was completed.

CopyDataRows (B & F)

 This is a stream of rows where each row is terminated by a Byte1(’\n’). This is then followed by
the sequence Byte1(’\\’), Byte1(’.’), Byte1(’\n’).

CopyInResponse (B)

 Byte1(’G’)

 Identifies the message as a Start Copy In response. The frontend must now send a
CopyDataRows message.

CopyOutResponse (B)

 Byte1(’H’)

 Identifies the message as a Start Copy Out response. This message will be followed by a
CopyDataRows message.

CursorResponse (B)

 Byte1(’P’)

 Identifies the message as a cursor response.

 String

 The name of the cursor. This will be "blank" if the cursor is implicit.

Chapter 4. Frontend/Backend Protocol

33

EmptyQueryResponse (B)

 Byte1(’I’)

 Identifies the message as a response to an empty query string.

 String("")

 Unused.

EncryptedPasswordPacket (F)

 Int32

 The size of the packet in bytes.

 String

 The encrypted (using crypt()) password.

ErrorResponse (B)

 Byte1(’E’)

 Identifies the message as an error.

 String

 The error message itself.

FunctionCall (F)

 Byte1(’F’)

 Identifies the message as a function call.

 String("")

 Unused.

 Int32

 Specifies the object ID of the function to call.

 Int32

 Specifies the number of arguments being supplied to the function.

 Then, for each argument, there is the following:

Chapter 4. Frontend/Backend Protocol

34

 Int32

 Specifies the size of the value of the argument, excluding this size.

 Byten

 Specifies the value of the field itself in binary format. n is the above size.

FunctionResultResponse (B)

 Byte1(’V’)

 Identifies the message as a function call result.

 Byte1(’G’)

 Specifies that a nonempty result was returned.

 Int32

 Specifies the size of the value of the result, excluding this size.

 Byten

 Specifies the value of the result itself in binary format. n is the above size.

 Byte1(’0’)

 Unused. (Strictly speaking, FunctionResultResponse and FunctionVoidResponse are the same
thing but with some optional parts to the message.)

FunctionVoidResponse (B)

 Byte1(’V’)

 Identifies the message as a function call result.

 Byte1(’0’)

 Specifies that an empty result was returned.

NoticeResponse (B)

 Byte1(’N’)

 Identifies the message as a notice.

 String

 The notice message itself.

Chapter 4. Frontend/Backend Protocol

35

NotificationResponse (B)

 Byte1(’A’)

 Identifies the message as a notification response.

 Int32

 The process ID of the notifying backend process.

 String

 The name of the condition that the notify has been raised on.

Query (F)

 Byte1(’Q’)

 Identifies the message as a query.

 String

 The query string itself.

ReadyForQuery (B)

 Byte1(’Z’)

 Identifies the message type. ReadyForQuery is sent whenever the backend is ready for a new
query cycle.

RowDescription (B)

 Byte1(’T’)

 Identifies the message as a row description.

 Int16

 Specifies the number of fields in a row (may be zero).

 Then, for each field, there is the following:

 String

 Specifies the field name.

 Int32

 Specifies the object ID of the field type.

Chapter 4. Frontend/Backend Protocol

36

 Int16

 Specifies the type size.

 Int32

 Specifies the type modifier.

StartupPacket (F)

 Int32(296)

 The size of the packet in bytes.

 Int32

 The protocol version number. The most significant 16 bits are the major version number. The
least 16 significant bits are the minor version number.

 LimString64

 The database name, defaults to the user name if empty.

 LimString32

 The user name.

 LimString64

 Any additional command line arguments to be passed to the backend by the postmaster.

 LimString64

 Unused.

 LimString64

 The optional tty the backend should use for debugging messages.

Terminate (F)

 Byte1(’X’)

 Identifies the message as a termination.

UnencryptedPasswordPacket (F)

 Int32

 The size of the packet in bytes.

Chapter 4. Frontend/Backend Protocol

37

 String

 The unencrypted password.

38

Chapter 5. gcc Default Optimizations
Note: Contributed by Brian Gallew (<geek+@cmu.edu>)

Configuring gcc to use certain flags by default is a simple matter of editing the
/usr/local/lib/gcc-lib/platform/version/specs file. The format of this file pretty simple.
The file is broken into sections, each of which is three lines long. The first line is "*section_name:"
(e.g. "*asm:"). The second line is a list of flags, and the third line is blank.

The easiest change to make is to append the desired default flags to the list in the appropriate section. As
an example, let’s suppose that I have linux running on a ’486 with gcc 2.7.2 installed in the default
location. In the file /usr/local/lib/gcc-lib/i486-linux/2.7.2/specs, 13 lines down I find the following
section:

- ----------SECTION----------
*cc1:

- ----------SECTION----------

As you can see, there aren’t any default flags. If I always wanted compiles of C code to use "-m486
-fomit-frame-pointer", I would change it to look like:

- ----------SECTION----------
*cc1:
- -m486 -fomit-frame-pointer

- ----------SECTION----------

If I wanted to be able to generate 386 code for another, older linux box lying around, I’d have to make it
look like this:

- ----------SECTION----------
*cc1:
%{!m386:-m486} -fomit-frame-pointer

- ----------SECTION----------

This will always omit frame pointers, any will build 486-optimized code unless -m386 is specified on
the command line.

You can actually do quite a lot of customization with the specs file. Always remember, however, that
these changes are global, and affect all users of the system.

39

Chapter 6. BKI Backend Interface
 Backend Interface (BKI) files are scripts in a special language that are input to the Postgres backend
running in the special �bootstrap� mode that allows it to perform database functions without a database
system already existing. BKI files can therefore be used to create the database system in the first place.
(And they are probably not useful for anything else.)

 initdb uses BKI files to do part of its job when creating a new database cluster. The input files used by
initbd are created as part of building and installing Postgres by a program named genbki.sh from some
specially formatted C header files in the source tree. The created BKI files are called global.bki (for
global catalogs) and template1.bki (for the catalogs initially stored in the template1 database and
then duplicated in every created database) and are normally installed in the share subdirectory of the
installation tree.

 Related information may be found in the documentation for initdb.

6.1. BKI File Format
 This section describes how the Postgres backend interprets BKI files. This description will be easier to
understand if the global.bki file is at hand as an example. You should also study the source code of
initdb to get an idea of how the backend is invoked.

 BKI input consists of a sequence of commands. Commands are made up of a number of tokens,
depending on the syntax of the command. Tokens are usually separated by whitespace, but need not be
if there is no ambiguity. There is not special command separator; the next token that syntactically cannot
belong to the preceeding command starts a new one. (Usually you would put a new command on a new
line, for clarity.) Tokens can be certain key words, special characters (parentheses, commas, etc.),
numbers, or double-quoted strings. Everything is case sensitive.

 Lines starting with a # are ignored.

6.2. BKI Commands
 open tablename

 Open the table called tablename for further manipulation.

 close [tablename]

 Close the open table called tablename. It is an error if tablename is not already opened. If no
tablename is given, then the currently open table is closed.

 create tablename (name1 = type1 [, name2 = type2, ...])

 Create a table named tablename with the columns given in parentheses.

 The type is not necessarily the data type that the column will have in the SQL environment; that
is determined by the pg_attribute system catalog. The type here is essentially only used to
allocate storage. The following types are allowed: bool, bytea, char (1 byte), name, int2,
int2vector, int4, regproc, text, oid, tid, xid, cid, oidvector, smgr, _int4 (array),

Chapter 6. BKI Backend Interface

40

_aclitem (array). Array types can also be indicated by writing [] after the name of the element
type.

Note: The table will only be created on disk, it will not automatically be registered in the
system catalogs and will therefore not be accessible unless appropriate rows are inserted in
pg_class, pg_attribute, etc.

 insert [OID = oid_value] (value1 value2 ...)

 Insert a new row into the open table using value1, value2, etc., for its column values and
oid_value for its OID. If oid_value is zero (0) or the clause is ommitted, then the next
available OID is used.

 NULL values can be specified using the special key word _null_. Values containing spaces
should be double quoted.

 declare [unique] index indexname on tablename using amname (opclass1 name1 [, ...])

 Create an index named indexname on the table named tablename using the amname access
method. The fields to index are called name1, name2 etc., and the operator classes to use are
opclass1, opclass2 etc., respectively.

build indices

 Build the indices that have previously been declared.

6.3. Example
 The following sequence of commands will create the test_table table with the two columns cola
and colb of type int4 and text, respectively, and insert two rows into the table.

create test_table (cola = int4, colb = text)
open test_table
insert OID=421 (1 "value1")
insert OID=422 (2 _null_)
close test_table

41

Chapter 7. Page Files
A description of the database file default page format.

This section provides an overview of the page format used by Postgres tables. User-defined access
methods need not use this page format.

In the following explanation, a byte is assumed to contain 8 bits. In addition, the term item refers to data
that is stored in Postgres tables.

The following table shows how pages in both normal Postgres tables and Postgres indices (e.g., a B-tree
index) are structured.

Table 7-1. Sample Page Layout

Item Description

itemPointerData

filler

itemData...

Unallocated Space

ItemContinuationData

Special Space

‘‘ItemData 2’’

‘‘ItemData 1’’

ItemIdData

PageHeaderData

The first 8 bytes of each page consists of a page header (PageHeaderData). Within the header, the first
three 2-byte integer fields (lower, upper, and special) represent byte offsets to the start of unallocated
space, to the end of unallocated space, and to the start of special space. Special space is a region at the
end of the page that is allocated at page initialization time and contains information specific to an access
method. The last 2 bytes of the page header, opaque, encode the page size and information on the
internal fragmentation of the page. Page size is stored in each page because frames in the buffer pool
may be subdivided into equal sized pages on a frame by frame basis within a table. The internal
fragmentation information is used to aid in determining when page reorganization should occur.

Following the page header are item identifiers (ItemIdData). New item identifiers are allocated from the
first four bytes of unallocated space. Because an item identifier is never moved until it is freed, its index
may be used to indicate the location of an item on a page. In fact, every pointer to an item (ItemPointer)
created by Postgres consists of a frame number and an index of an item identifier. An item identifier
contains a byte-offset to the start of an item, its length in bytes, and a set of attribute bits which affect its
interpretation.

Chapter 7. Page Files

42

The items themselves are stored in space allocated backwards from the end of unallocated space.
Usually, the items are not interpreted. However when the item is too long to be placed on a single page
or when fragmentation of the item is desired, the item is divided and each piece is handled as distinct
items in the following manner. The first through the next to last piece are placed in an item continuation
structure (ItemContinuationData). This structure contains itemPointerData which points to the next
piece and the piece itself. The last piece is handled normally.

43

Chapter 8. Genetic Query Optimization

Author: Written by Martin Utesch (<utesch@aut.tu-freiberg.de>) for the Institute of Automatic
Control at the University of Mining and Technology in Freiberg, Germany.

8.1. Query Handling as a Complex Optimization Problem
 Among all relational operators the most difficult one to process and optimize is the join. The number of
alternative plans to answer a query grows exponentially with the number of joins included in it. Further
optimization effort is caused by the support of a variety of join methods (e.g., nested loop, hash join,
merge join in Postgres) to process individual joins and a diversity of indices (e.g., r-tree, b-tree, hash in
Postgres) as access paths for relations.

 The current Postgres optimizer implementation performs a near-exhaustive search over the space of
alternative strategies. This query optimization technique is inadequate to support database application
domains that involve the need for extensive queries, such as artificial intelligence.

 The Institute of Automatic Control at the University of Mining and Technology, in Freiberg, Germany,
encountered the described problems as its folks wanted to take the Postgres DBMS as the backend for a
decision support knowledge based system for the maintenance of an electrical power grid. The DBMS
needed to handle large join queries for the inference machine of the knowledge based system.

 Performance difficulties in exploring the space of possible query plans created the demand for a new
optimization technique being developed.

 In the following we propose the implementation of a Genetic Algorithm as an option for the database
query optimization problem.

8.2. Genetic Algorithms (GA)
 The GA is a heuristic optimization method which operates through determined, randomized search. The
set of possible solutions for the optimization problem is considered as a population of individuals. The
degree of adaption of an individual to its environment is specified by its fitness.

 The coordinates of an individual in the search space are represented by chromosomes, in essence a set
of character strings. A gene is a subsection of a chromosome which encodes the value of a single
parameter being optimized. Typical encodings for a gene could be binary or integer.

 Through simulation of the evolutionary operations recombination, mutation, and selection new
generations of search points are found that show a higher average fitness than their ancestors.

 According to the "comp.ai.genetic" FAQ it cannot be stressed too strongly that a GA is not a pure
random search for a solution to a problem. A GA uses stochastic processes, but the result is distinctly
non-random (better than random).

Chapter 8. Genetic Query Optimization

44

Structured Diagram of a GA:

P(t) generation of ancestors at a time t
P’’(t) generation of descendants at a time t

+===+
|>>>>>>>>>>> Algorithm GA <<<<<<<<<<<<<<|
+===+
| INITIALIZE t := 0 |
+===+
| INITIALIZE P(t) |
+===+
| evalute FITNESS of P(t) |
+===+
| while not STOPPING CRITERION do |
| +-------------------------------------+
| | P’(t) := RECOMBINATION{P(t)} |
| +-------------------------------------+
| | P’’(t) := MUTATION{P’(t)} |
| +-------------------------------------+
| | P(t+1) := SELECTION{P’’(t) + P(t)} |
| +-------------------------------------+
| | evalute FITNESS of P’’(t) |
| +-------------------------------------+
| | t := t + 1 |
+===+=====================================+

8.3. Genetic Query Optimization (GEQO) in Postgres
 The GEQO module is intended for the solution of the query optimization problem similar to a traveling
salesman problem (TSP). Possible query plans are encoded as integer strings. Each string represents the
join order from one relation of the query to the next. E. g., the query tree

 /\
 /\ 2
 /\ 3
4 1

 is encoded by the integer string ’4-1-3-2’, which means, first join relation ’4’ and ’1’, then ’3’, and then
’2’, where 1, 2, 3, 4 are relids within the Postgres optimizer.

 Parts of the GEQO module are adapted from D. Whitley’s Genitor algorithm.

 Specific characteristics of the GEQO implementation in Postgres are:

Chapter 8. Genetic Query Optimization

45

 Usage of a steady state GA (replacement of the least fit individuals in a population, not
whole-generational replacement) allows fast convergence towards improved query plans. This is
essential for query handling with reasonable time;
 Usage of edge recombination crossover which is especially suited to keep edge losses low for the
solution of the TSP by means of a GA;
 Mutation as genetic operator is deprecated so that no repair mechanisms are needed to generate legal
TSP tours.

 The GEQO module allows the Postgres query optimizer to support large join queries effectively
through non-exhaustive search.

8.3.1. Future Implementation Tasks for PostgreSQL GEQO

 Work is still needed to improve the genetic algorithm parameter settings. In file
backend/optimizer/geqo/geqo_params.c, routines gimme_pool_size and
gimme_number_generations, we have to find a compromise for the parameter settings to satisfy two
competing demands:

 Optimality of the query plan
 Computing time

References

Reference information for GEQ algorithms.

 The Hitch-Hiker’s Guide to Evolutionary Computation , Jörg Heitkötter and David Beasley, InterNet
resource , The Design and Implementation of the Postgres Query Optimizer , Z. Fong, University
of California, Berkeley Computer Science Department , Fundamentals of Database Systems , R.
Elmasri and S. Navathe, The Benjamin/Cummings Pub., Inc. .

 FAQ in comp.ai.genetic (news://comp.ai.genetic) is available at Encore
(ftp://ftp.Germany.EU.net/pub/research/softcomp/EC/Welcome.html).

 File planner/Report.ps in the ’postgres-papers’ distribution.

46

Bibliography
 Selected references and readings for SQL and Postgres.

 Some white papers and technical reports from the original Postgres development team are available at
the University of California, Berkeley, Computer Science Department web site
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/)

SQL Reference Books
 The Practical SQL Handbook , Bowman et al, 1996 , Using Structured Query Language , 3, Judith

Bowman, Sandra Emerson, and Marcy Darnovsky, 0-201-44787-8, 1996, Addison-Wesley, 1996.

 A Guide to the SQL Standard , Date and Darwen, 1997 , A user’s guide to the standard database
language SQL , 4, C. J. Date and Hugh Darwen, 0-201-96426-0, 1997, Addison-Wesley, 1997.

 An Introduction to Database Systems , Date, 1994 , 6, C. J. Date, 1, 1994, Addison-Wesley, 1994.

 Understanding the New SQL , Melton and Simon, 1993 , A complete guide, Jim Melton and Alan R.
Simon, 1-55860-245-3, 1993, Morgan Kaufmann, 1993.

Abstract

Accessible reference for SQL features.

 Principles of Database and Knowledge : Base Systems , Ullman, 1988 , Jeffrey D. Ullman, 1, Computer
Science Press , 1988 .

PostgreSQL-Specific Documentation
 The PostgreSQL Administrator’s Guide , The Administrator’s Guide , Edited by Thomas Lockhart,

2001-04-13, The PostgreSQL Global Development Group.

 The PostgreSQL Developer’s Guide , The Developer’s Guide , Edited by Thomas Lockhart,
2001-04-13, The PostgreSQL Global Development Group.

 The PostgreSQL Programmer’s Guide , The Programmer’s Guide , Edited by Thomas Lockhart,
2001-04-13, The PostgreSQL Global Development Group.

 The PostgreSQL Tutorial Introduction , The Tutorial , Edited by Thomas Lockhart, 2001-04-13, The
PostgreSQL Global Development Group.

 The PostgreSQL User’s Guide , The User’s Guide , Edited by Thomas Lockhart, 2001-04-13, The
PostgreSQL Global Development Group.

 Enhancement of the ANSI SQL Implementation of PostgreSQL , Simkovics, 1998 , Stefan Simkovics,
O.Univ.Prof.Dr.. Georg Gottlob, November 29, 1998, Department of Information Systems, Vienna
University of Technology .

 Discusses SQL history and syntax, and describes the addition of INTERSECT and EXCEPT
constructs into Postgres. Prepared as a Master’s Thesis with the support of O.Univ.Prof.Dr. Georg
Gottlob and Univ.Ass. Mag. Katrin Seyr at Vienna University of Technology.

Bibliography

47

 The Postgres95 User Manual , Yu and Chen, 1995 , A. Yu and J. Chen, The POSTGRES Group , Sept.
5, 1995, University of California, Berkeley CA.

Proceedings and Articles
 Partial indexing in POSTGRES: research project , Olson, 1993 , Nels Olson, 1993, UCB Engin

T7.49.1993 O676, University of California, Berkeley CA.

 A Unified Framework for Version Modeling Using Production Rules in a Database System , Ong and
Goh, 1990 , L. Ong and J. Goh, April, 1990, ERL Technical Memorandum M90/33, University of
California, Berkeley CA.

 The Postgres Data Model , Rowe and Stonebraker, 1987 , L. Rowe and M. Stonebraker, Sept. 1987,
VLDB Conference, Brighton, England, 1987.

 Generalized partial indexes (http://simon.cs.cornell.edu/home/praveen/papers/partindex.de95.ps.Z) ,
Seshardri, 1995 , P. Seshadri and A. Swami, March 1995, Eleventh International Conference on
Data Engineering, 1995, Cat. No.95CH35724, IEEE Computer Society Press.

 The Design of Postgres , Stonebraker and Rowe, 1986 , M. Stonebraker and L. Rowe, May 1986,
Conference on Management of Data, Washington DC, ACM-SIGMOD, 1986.

 The Design of the Postgres Rules System, Stonebraker, Hanson, Hong, 1987 , M. Stonebraker, E.
Hanson, and C. H. Hong, Feb. 1987, Conference on Data Engineering, Los Angeles, CA, IEEE,
1987.

 The Postgres Storage System , Stonebraker, 1987 , M. Stonebraker, Sept. 1987, VLDB Conference,
Brighton, England, 1987.

 A Commentary on the Postgres Rules System , Stonebraker et al, 1989, M. Stonebraker, M. Hearst, and
S. Potamianos, Sept. 1989, Record 18(3), SIGMOD, 1989.

 The case for partial indexes (DBMS)
(http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/papers/ERL-M89-17.pdf) , Stonebraker, M, 1989b,
M. Stonebraker, Dec. 1989, Record 18(no.4):4-11, SIGMOD, 1989.

 The Implementation of Postgres , Stonebraker, Rowe, Hirohama, 1990 , M. Stonebraker, L. A. Rowe,
and M. Hirohama, March 1990, Transactions on Knowledge and Data Engineering 2(1), IEEE.

 On Rules, Procedures, Caching and Views in Database Systems , Stonebraker et al, ACM, 1990 , M.
Stonebraker and et al, June 1990, Conference on Management of Data, ACM-SIGMOD.

48

Appendix DG1. The CVS Repository
 The Postgres source code is stored and managed using the CVS code management system.

 At least two methods, anonymous CVS and CVSup, are available to pull the CVS code tree from the
Postgres server to your local machine.

DG1.1. Getting The Source Via Anonymous CVS
 If you would like to keep up with the current sources on a regular basis, you can fetch them from our
CVS server and then use CVS to retrieve updates from time to time.

Anonymous CVS

1. You will need a local copy of CVS (Concurrent Version Control System), which you can get from
http://www.cyclic.com/ or any GNU software archive site. We currently recommend version 1.10
(the most recent at the time of writing). Many systems have a recent version of cvs installed by
default.

2. Do an initial login to the CVS server:

$ cvs -d :pserver:anoncvs@postgresql.org:/home/projects/pgsql/cvsroot
login

 You will be prompted for a password; enter ’postgresql’. You should only need to do this once,
since the password will be saved in .cvspass in your home directory.

3. Fetch the Postgres sources:

cvs -z3 -d :pserver:anoncvs@postgresql.org:/home/projects/pgsql/cvsroot co
-P pgsql

 which installs the Postgres sources into a subdirectory pgsql of the directory you are currently in.

Note: If you have a fast link to the Internet, you may not need -z3, which instructs CVS to use gzip
compression for transferred data. But on a modem-speed link, it’s a very substantial win.

 This initial checkout is a little slower than simply downloading a tar.gz file; expect it to take 40
minutes or so if you have a 28.8K modem. The advantage of CVS doesn’t show up until you want
to update the file set later on.

4. Whenever you want to update to the latest CVS sources, cd into the pgsql subdirectory, and issue

$ cvs -z3 update -d -P

 This will fetch only the changes since the last time you updated. You can update in just a couple of
minutes, typically, even over a modem-speed line.

Appendix DG1. The CVS Repository

49

5. You can save yourself some typing by making a file .cvsrc in your home directory that contains

cvs -z3
update -d -P

 This supplies the -z3 option to all cvs commands, and the -d and -P options to cvs update. Then
you just have to say

$ cvs update

 to update your files.

Caution
 Some older versions of CVS have a bug that causes all checked-out files to be stored
world-writable in your directory. If you see that this has happened, you can do something like

$ chmod -R go-w pgsql

 to set the permissions properly. This bug is fixed as of CVS version 1.9.28.

 CVS can do a lot of other things, such as fetching prior revisions of the Postgres sources rather than the
latest development version. For more info consult the manual that comes with CVS, or see the online
documentation at http://www.cyclic.com/.

DG1.2. CVS Tree Organization

Author: Written by Marc G. Fournier (<scrappy@hub.org>) on 1998-11-05

 The command cvs checkout has a flag, -r, that lets you check out a certain revision of a module. This
flag makes it easy to, for example, retrieve the sources that make up release 6_4 of the module ‘tc’ at
any time in the future:

$ cvs checkout -r REL6_4 tc

 This is useful, for instance, if someone claims that there is a bug in that release, but you cannot find the
bug in the current working copy.

Tip: You can also check out a module as it was at any given date using the -D option.

 When you tag more than one file with the same tag you can think about the tag as "a curve drawn

Appendix DG1. The CVS Repository

50

through a matrix of filename vs. revision number". Say we have 5 files with the following revisions:

 file1 file2 file3 file4 file5

 1.1 1.1 1.1 1.1 /--1.1* <-*- TAG
 1.2*- 1.2 1.2 -1.2*-
 1.3 \- 1.3*- 1.3 / 1.3
 1.4 \ 1.4 / 1.4
 \-1.5*- 1.5
 1.6

 then the tag "TAG" will reference file1-1.2, file2-1.3, etc.

Note: For creating a release branch, other then a -b option added to the command, it’s the same
thing.

 So, to create the 6.4 release I did the following:

$ cd pgsql
$ cvs tag -b REL6_4

 which will create the tag and the branch for the RELEASE tree.

 For those with CVS access, it’s simple to create directories for different versions. First, create two
subdirectories, RELEASE and CURRENT, so that you don’t mix up the two. Then do:

cd RELEASE
cvs checkout -P -r REL6_4 pgsql
cd ../CURRENT
cvs checkout -P pgsql

 which results in two directory trees, RELEASE/pgsql and CURRENT/pgsql. From that point on, CVS
will keep track of which repository branch is in which directory tree, and will allow independent updates
of either tree.

 If you are only working on the CURRENT source tree, you just do everything as before we started tagging
release branches.

 After you’ve done the initial checkout on a branch

$ cvs checkout -r REL6_4

 anything you do within that directory structure is restricted to that branch. If you apply a patch to that
directory structure and do a

cvs commit

 while inside of it, the patch is applied to the branch and only the branch.

Appendix DG1. The CVS Repository

51

DG1.3. Getting The Source Via CVSup
 An alternative to using anonymous CVS for retrieving the Postgres source tree is CVSup. CVSup was
developed by John Polstra (<jdp@polstra.com>) to distribute CVS repositories and other file trees for
the FreeBSD project (http://www.freebsd.org).

 A major advantage to using CVSup is that it can reliably replicate the entire CVS repository on your
local system, allowing fast local access to cvs operations such as log and diff. Other advantages
include fast synchronization to the Postgres server due to an efficient streaming transfer protocol which
only sends the changes since the last update.

DG1.3.1. Preparing A CVSup Client System

 Two directory areas are required for CVSup to do it’s job: a local CVS repository (or simply a directory
area if you are fetching a snapshot rather than a repository; see below) and a local CVSup bookkeeping
area. These can coexist in the same directory tree.

 Decide where you want to keep your local copy of the CVS repository. On one of our systems we
recently set up a repository in /home/cvs/, but had formerly kept it under a Postgres development tree
in /opt/postgres/cvs/. If you intend to keep your repository in /home/cvs/, then put

setenv CVSROOT /home/cvs

 in your .cshrc file, or a similar line in your .bashrc or .profile file, depending on your shell.

 The cvs repository area must be initialized. Once CVSROOT is set, then this can be done with a single
command:

$ cvs init

 after which you should see at least a directory named CVSROOT when listing the CVSROOT directory:

$ ls $CVSROOT
CVSROOT/

DG1.3.2. Running a CVSup Client

 Verify that cvsup is in your path; on most systems you can do this by typing

which cvsup

 Then, simply run cvsup using:

$ cvsup -L 2 postgres.cvsup

Appendix DG1. The CVS Repository

52

 where -L 2 enables some status messages so you can monitor the progress of the update, and
postgres.cvsup is the path and name you have given to your CVSup configuration file.

 Here is a CVSup configuration file modified for a specific installation, and which maintains a full local
CVS repository:

This file represents the standard CVSup distribution file
for the PostgreSQL ORDBMS project
Modified by lockhart@alumni.caltech.edu 1997-08-28
- Point to my local snapshot source tree
- Pull the full CVS repository, not just the latest snapshot
#
Defaults that apply to all the collections
*default host=postgresql.org
*default compress
*default release=cvs
*default delete use-rel-suffix
enable the following line to get the latest snapshot
#*default tag=.
enable the following line to get whatever was specified above or by default
at the date specified below
#*default date=97.08.29.00.00.00

base directory points to where CVSup will store its ’bookmarks’ file(s)
will create subdirectory sup/
#*default base=/opt/postgres # /usr/local/pgsql
*default base=/home/cvs

prefix directory points to where CVSup will store the actual
distribution(s)
*default prefix=/home/cvs

complete distribution, including all below
pgsql

individual distributions vs ’the whole thing’
pgsql-doc
pgsql-perl5
pgsql-src

 The following is a suggested CVSup config file from the Postgres ftp site
(ftp://ftp.postgresql.org/pub/CVSup/README.cvsup) which will fetch the current snapshot only:

This file represents the standard CVSup distribution file
for the PostgreSQL ORDBMS project
#
Defaults that apply to all the collections
*default host=postgresql.org
*default compress

Appendix DG1. The CVS Repository

53

*default release=cvs
*default delete use-rel-suffix
*default tag=.

base directory points to where CVSup will store its ’bookmarks’ file(s)
*default base=/usr/local/pgsql

prefix directory points to where CVSup will store the actual
distribution(s)
*default prefix=/usr/local/pgsql

complete distribution, including all below
pgsql

individual distributions vs ’the whole thing’
pgsql-doc
pgsql-perl5
pgsql-src

DG1.3.3. Installing CVSup

 CVSup is available as source, pre-built binaries, or Linux RPMs. It is far easier to use a binary than to
build from source, primarily because the very capable, but voluminous, Modula-3 compiler is required
for the build.

CVSup Installation from Binaries

 You can use pre-built binaries if you have a platform for which binaries are posted on the Postgres ftp
site (ftp://postgresql.org/pub), or if you are running FreeBSD, for which CVSup is available as a port.

Note: CVSup was originally developed as a tool for distributing the FreeBSD source tree. It is
available as a "port", and for those running FreeBSD, if this is not sufficient to tell how to obtain and
install it then please contribute a procedure here.

 At the time of writing, binaries are available for Alpha/Tru64, ix86/xBSD, HPPA/HPUX-10.20,
MIPS/irix, ix86/linux-libc5, ix86/linux-glibc, Sparc/Solaris, and Sparc/SunOS.

1. Retrieve the binary tar file for cvsup (cvsupd is not required to be a client) appropriate for your
platform.

a. If you are running FreeBSD, install the CVSup port.

b. If you have another platform, check for and download the appropriate binary from the
Postgres ftp site (ftp://postgresql.org/pub).

2. Check the tar file to verify the contents and directory structure, if any. For the linux tar file at least,
the static binary and man page is included without any directory packaging.

Appendix DG1. The CVS Repository

54

a. If the binary is in the top level of the tar file, then simply unpack the tar file into your
target directory:

$ cd /usr/local/bin
$ tar zxvf /usr/local/src/cvsup-16.0-linux-i386.tar.gz
$ mv cvsup.1 ../doc/man/man1/

b. If there is a directory structure in the tar file, then unpack the tar file within /usr/local/src
and move the binaries into the appropriate location as above.

3. Ensure that the new binaries are in your path.

$ rehash
$ which cvsup
$ set path=(path to cvsup $path)
$ which cvsup
/usr/local/bin/cvsup

DG1.3.4. Installation from Sources

 Installing CVSup from sources is not entirely trivial, primarily because most systems will need to
install a Modula-3 compiler first. This compiler is available as Linux RPM, FreeBSD package, or source
code.

Note: A clean-source installation of Modula-3 takes roughly 200MB of disk space, which shrinks to
roughly 50MB of space when the sources are removed.

Linux installation

1. Install Modula-3.

a. Pick up the Modula-3 distribution from Polytechnique Montréal
(http://m3.polymtl.ca/m3), who are actively maintaining the code base originally
developed by the DEC Systems Research Center
(http://www.research.digital.com/SRC/modula-3/html/home.html). The PM3 RPM
distribution is roughly 30MB compressed. At the time of writing, the 1.1.10-1 release
installed cleanly on RH-5.2, whereas the 1.1.11-1 release is apparently built for another
release (RH-6.0?) and does not run on RH-5.2.

Tip: This particular rpm packaging has many RPM files, so you will likely want to place
them into a separate directory.

b. Install the Modula-3 rpms:

rpm -Uvh pm3*.rpm

Appendix DG1. The CVS Repository

55

2. Unpack the cvsup distribution:

cd /usr/local/src
tar zxf cvsup-16.0.tar.gz

3. Build the cvsup distribution, suppressing the GUI interface feature to avoid requiring X11 libraries:

make M3FLAGS="-DNOGUI"

 and if you want to build a static binary to move to systems that may not have Modula-3 installed,
try:

make M3FLAGS="-DNOGUI -DSTATIC"

4. Install the built binary:

make M3FLAGS="-DNOGUI -DSTATIC" install

56

Appendix DG2. Documentation
 PostgreSQL has four primary documentation formats:

 Plain text, for pre-installation information

 HTML, for on-line browsing and reference

 Postscript, for printing

 man pages, for quick reference.

 Additionally, a number of plain-text README-type files can be found throughout the PostgreSQL
source tree, documenting various implementation issues.

 The documentation is organized into several books:

 Tutorial: introduction for new users

 User’s Guide: documents the query language environment

 Reference Manual: documents the query language

 Administrator’s Guide: installation and server maintenance

 Programmer’s Guide: programming client applications and server extensions

 Developer’s Guide: assorted information for developers of PostgreSQL proper

 All books are available as HTML and Postscript. The Reference Manual contains reference entries
which are also shipped as man pages.

 HTML documentation and man pages are part of a standard distribution and are installed by default.
Postscript format documentation is available separately for download.

DG2.1. DocBook
 The documentation sources are written in DocBook, which is a markup language superficially similar to
HTML. Both of these languages are applications of the Standard Generalized Markup Language,
SGML, which is essentially a language for describing other languages. In what follows, the terms
DocBook and SGML are both used, but technically they are not interchangeable.

 DocBook allows an author to specify the structure and content of a technical document without
worrying about presentation details. A document style defines how that content is rendered into one of
several final forms. DocBook is maintained by the OASIS (http://www.oasis-open.org) group. The
official DocBook site (http://www.oasis-open.org/docbook) has good introductory and reference
documentation and a complete O’Reilly book for your online reading pleasure. The FreeBSD
Documentation Project (http://www.freebsd.org/docproj/docproj.html) also uses DocBook and has some
good information, including a number of style guidelines that might be worth considering.

Appendix DG2. Documentation

57

DG2.2. Toolsets
 The following tools are used to process the documentation. Some may be optional, as noted.

DocBook DTD (http://www.oasis-open.org/docbook/sgml/)

 This is the definition of DocBook itself. We currently use version 3.1; you cannot use later or
earlier versions. Note that there is also an XML version of DocBook -- do not use that.

ISO 8879 character entities (http://www.oasis-open.org/cover/ISOEnts.zip)

 These are required by DocBook but are distributed separately because they are maintained by ISO.

Jade (http://openjade.sourceforge.net)

 This is the base package of SGML processing. It contains an SGML parser, a DSSSL processor
(that is, a program to convert SGML to other formats using DSSSL stylesheets), as well as a
number of related tools. Jade is now being maintained by the OpenJade group, no longer by James
Clark.

Norm Walsh’s Modular DocBook Stylesheets (http://nwalsh.com/docbook/dsssl/index.html)

 These contain the processing instructions for converting the DocBook sources to other formats,
such as HTML.

DocBook2X tools (http://docbook2x.sourceforge.net)

 This optional package is used to create man pages. It has a number of prerequisite packages of its
own. Check the web site.

JadeTeX

 If you want to, you can also install JadeTeX to use TeX as a formatting backend for Jade. This will
generate printed output that is inferior to what you get from the RTF backend. Tables are a
particular problem area. Also, there is no opportunity to manually polish the results. Still, it works
all right, especially for simpler documents that don’t use tables, and as both JadeTeX and the style
sheets are under continuous improvement, it will certainly get better over time.

 We have documented experience with several installation methods for the various tools that are needed
to process the documentation. These will be described below. There may be some other packaged
distributions for these tools. Please report package status to the docs mailing list and we will include that
information here.

DG2.2.1. Linux RPM Installation

 Many vendors provide a complete RPM set for DocBook processing in their distribution, which is
usually based on the docbook-tools (http://sources.redhat.com/docbook-tools/) effort at Red Hat
Software. Look for an �SGML� option while installing, or the following packages: sgml-common,
docbook, stylesheets, openjade (or jade). Possibly sgml-tools will be needed as well. If your
distributor does not provide these then you should be able to make use of the packages from some large,
reasonably compatible vendor.

Appendix DG2. Documentation

58

DG2.2.2. FreeBSD Installation

 The FreeBSD Documentation Project is itself a heavy user of DocBook, so it comes as no surprise that
there is a full set of �ports� of the documentation tools available on FreeBSD. The following ports need to
be installed to build the documentation on FreeBSD.

textproc/sp

textproc/openjade

textproc/docbook-310

textproc/iso8879

textproc/dsssl-docbook-modular

 A number of things from /usr/ports/print (tex, jadetex) might also be of interest.

 It’s possible that the ports do not update the main catalog file in /usr/local/share/sgml/catalog.
Be sure to have the following line in there:

CATALOG "/usr/local/share/sgml/docbook/3.1/catalog"

 If you do not want to edit the file you can also set the environment variable SGML_CATALOG_FILES
to a colon-separated list of catalog files (such as the one above).

 More information about the FreeBSD documentation tools can be found in the FreeBSD Documentation
Project’s instructions (http://www.freebsd.org/tutorials/docproj-primer/tools.html).

DG2.2.3. Debian Packages

 There is a full set of packages of the documentation tools available for Debian GNU/Linux. To install,
simply use:

apt-get install jade
apt-get install docbook
apt-get install docbook-stylesheets

DG2.2.4. Manual Installation from Source

 The manual installation process of the DocBook tools is somewhat complex, so if you have pre-built
packages available, use them. We describe here only a standard setup, with reasonabley standard
installation paths, and no �fancy� features. For details, you should study the documentation of the
respective package, and read SGML introductory material.

DG2.2.4.1. Installing Jade

 The installation of OpenJade offers a GNU-style ./configure; make; make install build

Appendix DG2. Documentation

59

process. Details can be found in the OpenJade source distribution. In a nutshell:

./configure --enable-default-catalog=/usr/local/share/sgml/catalog
make
make install

 Be sure to remember where you put the �default catalog�; you will need it below. You can also leave it
off, but then you will have to set the environment variable SGML_CATALOG_FILES to point to the
file whenever you use jade later on.

 Additionally, you should install the files dsssl.dtd, fot.dtd, style-sheet.dtd, and catalog
from the dsssl directory somewhere, perhaps into /usr/local/share/sgml/dsssl. (Or just copy
the entire directory.)

DG2.2.4.2. Installing the DocBook DTD Kit

1. Obtain the DocBook V3.1 (http://www.oasis-open.org/docbook/sgml/3.1/docbk31.zip) distribution.

2. Unpack the archive.

$ unzip -a docbk31.zip

3. Place the files into the directory /usr/local/share/sgml/docbook31. (The exact location is
irrelevant, but this one is fairly standard.)

4. Create a file /usr/local/share/sgml/catalog (or whatever you told jade during installation)
and put a line like this into it:

CATALOG "docbook31/docbook.cat"

 Optionally, you can edit the file docbook.cat and comment out or remove the line containing
DTDDECL. If you do not then you will get warnings from jade, but there is no further harm.

5. Download the ISO 8879 character entities (http://www.oasis-open.org/cover/ISOEnts.zip) archive,
unpack it, and put the files in the same directory you put the DocBook files in.

DG2.2.4.3. Installing Norman Walsh’s DSSSL Style Sheets

 To install the style sheets, simply unzip the distribution kit in a suitable place, for example
/usr/local/share/sgml/stylesheets. (The archive will automatically create a docbook
subdirectory.)

DG2.2.4.4. Installing JadeTeX

 To install and use JadeTeX, you will need a working installation of TeX and LaTeX2e, including the
supported tools and graphics packages, Babel, AMS fonts and AMS-LaTeX, the PSNFSS extension and
companion kit of �the 35 fonts�, the dvips program for generating PostScript, the macro packages
fancyhdr, hyperref, minitoc, url and ot2enc, and of course JadeTeX itself. All of these can be found on
your friendly neighborhood CTAN (http://www.ctan.org) site.

 JadeTeX does not at the time of writing come with much of an installation guide, but there is a
makefile that shows what is needed. It also includes a directory cooked, wherein you’ll find some of
the macro packages it needs, but not all, and not complete -- at least last we looked.

Appendix DG2. Documentation

60

 Before building the jadetex.fmt format file, you’ll probably want to edit the jadetex.ltx file, to
change the configuration of Babel to suit your locality. The line to change looks something like

\RequirePackage[german,french,english]{babel}[1997/01/23]

 and you should obviously list only the languages you actually need, and have configured Babel for.

 It is quite likely that when you use JadeTeX with PostgreSQL documentation sources, that TeX will
stop during the second run, and tell you that its capacity has been exceeded. This is, as far as we can tell,
because of the way JadeTeX generates cross referencing information. TeX can, of course, be compiled
with larger data structure sizes. The details of this will vary according to your installation.

DG2.3. Building The Documentation
 Before you can build the documentation you need to run the configure script as you would when
building the programs themselves. Check the output near the end of the run, it should look something
like this:

checking for onsgmls... onsgmls

checking for openjade... openjade

checking for DocBook V3.1... yes

checking for DocBook stylesheets... /usr/lib/sgml/stylesheets/nwalsh-modular

checking for sgmlspl... sgmlspl

 If neither onsgmls nor nsgmls were found then you will not see the remaining 4 lines. nsgmls is part
of the Jade package. If �DocBook V3.1� was not found then you did not install the DocBook DTD kit in a
place where jade can find it, or you have not set up the catalog files correctly. See the installation hints
above. The DocBook stylesheets are looked for in a number of relatively standard places, but if you
have them some other place then you should set the environment variable DOCBOOKSTYLE to the
location and rerun configure afterwards.

 Once you have everything set up, change to the directory doc/src/sgml and run one of the following
commands: (Remember to use GNU make.)

 To build the HTML version of the Administrator’s Guide:

doc/src/sgml$ gmake admin.html

 For the RTF version of the same:

doc/src/sgml$ gmake admin.rtf

 To get a DVI version via JadeTeX:

doc/src/sgml$ gmake admin.dvi

 And Postscript from the DVI:

doc/src/sgml$ gmake admin.ps

Appendix DG2. Documentation

61

Note: The official Postscript format documentation is generated differently. See Section DG2.3.3
below.

 The other books can be built with analogous commands by replacing admin with one of developer,
programmer, tutorial, or user. Using postgres builds an integrated version of all 5 books, which
is practical since the browser interface makes it easy to move around all of the documentation by just
clicking.

DG2.3.1. HTML

 When building HTML documentation in doc/src/sgml, some of the resulting files will possibly (or
quite certainly) have conflicting names between books. Therefore the files are not in that directory in the
regular distribution. Instead, the files belonging to each book are stored in a tar archive that is unpacked
at installation time. To create a set of HTML documentation packages use the commands

cd doc/src
gmake tutorial.tar.gz
gmake user.tar.gz
gmake admin.tar.gz
gmake programmer.tar.gz
gmake postgres.tar.gz
gmake install

 In the distribution, these archives live in the doc directory and are installed by default with gmake
install.

DG2.3.2. Manpages

 We use the docbook2man utility to convert DocBook REFENTRY pages to *roff output suitable for
man pages. The man pages are also distributed as a tar archive, similar to the HTML version. To create
the man page package, use the commands

cd doc/src
gmake man

 which will result in a tar file being generated in the doc/src directory.

 The man build leaves a lot of confusing output, and special care must be taken to produce quality
results. There is still room for improvement in this area.

DG2.3.3. Hardcopy Generation

 The hardcopy Postscript documentation is generated by converting the SGML source code to RTF, then
importing into ApplixWare-4.4.1. After a little cleanup (see the following section) the output is
"printed" to a postscript file.

 Several areas are addressed while generating Postscript hardcopy, including RTF repair, ToC
generation, and page break adjustments.

Appendix DG2. Documentation

62

Applixware RTF Cleanup

 jade, an integral part of the hardcopy procedure, omits specifying a default style for body text. In the
past, this undiagnosed problem led to a long process of Table of Contents (ToC) generation. However,
with great help from the ApplixWare folks the symptom was diagnosed and a workaround is available.

1. Generate the RTF input by typing (for example):

% cd doc/src/sgml
% make tutorial.rtf

2. Repair the RTF file to correctly specify all styles, in particular the default style. The field can be
added using vi or the following small sed procedure:

#!/bin/sh
fixrtf.sh
Utility to repair slight damage in RTF files generated by jade
Thomas Lockhart <lockhart@alumni.caltech.edu>
#
for i in $* ; do
 mv $i $i.orig
 cat $i.orig | sed ’s#\\stylesheet#\\stylesheet{\\s0 Normal;}#’ > $i
done

exit

 where the script is adding {\s0 Normal;} as the zero-th style in the document. According to
ApplixWare, the RTF standard would prohibit adding an implicit zero-th style, though M$Word
happens to handle this case.

3. Open a new document in Applix Words and then import the RTF file.

4. Generate a new ToC using ApplixWare.

a. Select the existing ToC lines, from the beginning of the first character on the first line to
the last character of the last line.

b. Build a new ToC using Tools.BookBuilding.CreateToC. Select the first three levels
of headers for inclusion in the ToC. This will replace the existing lines imported in the
RTF with a native ApplixWare ToC.

c. Adjust the ToC formatting by using Format.Style, selecting each of the three ToC
styles, and adjusting the indents for First and Left. Use the following values:

Table DG2-1. Indent Formatting for Table of Contents

 Style First Indent (inches) Left Indent (inches)

 TOC-Heading 1 0.6 0.6

 TOC-Heading 2 1.0 1.0

 TOC-Heading 3 1.4 1.4

Appendix DG2. Documentation

63

5. Work through the document to:

 Adjust page breaks.

 Adjust table column widths.

 Insert figures into the document. Center each figure on the page using the centering margins
button on the ApplixWare toolbar.

Note: Not all documents have figures. You can grep the SGML source files for the string
"graphic" to identify those parts of the documentation that may have figures. A few figures
are replicated in various parts of the documentation.

6. Replace the right-justified page numbers in the Examples and Figures portions of the ToC with
correct values. This only takes a few minutes per document.

7. If a bibliography is present, remove the short form reference title from each entry. The DocBook
stylesheets from Norm Walsh seem to print these out, even though this is a subset of the
information immediately following.

8. Save the document as native Applix Words format to allow easier last minute editing later.

9. "Print" the document to a file in Postscript format.

10. Compress the Postscript file using gzip. Place the compressed file into the doc directory.

DG2.3.4. Plain Text Files

 Several files are distributed as plain text, for reading during the installation process. The INSTALL file
corresponds to the chapter in the Administrator’s Guide, with some minor changes to account for the
different context. To recreate the file, change to the directory doc/src/sgml and enter gmake
INSTALL. This will create a file INSTALL.html that can be saved as text with Netscape Navigator and
put into the place of the existing file. Netscape seems to offer the best quality for HTML to text
conversions (over lynx and w3m).

 The file HISTORY can be created similarly, using the command gmake HISTORY. The table of
contents should be removed manually from the resulting text file.

 Since it does not change very often, the generation of the file src/test/regress/README is not fully
automated. After building the HTML version of the Administrator’s Guide, convert the resulting files
regress.html and regress-platform.html to text, using Netscape. Then paste the text files
together and edit them to taste (e.g., remove the navigation bars, remove the references to other
chapters).

DG2.4. Documentation Authoring
 SGML and DocBook do not suffer from an oversupply of open-source authoring tools. The most
common toolset is the Emacs/XEmacs editor with appropriate editing mode. On some systems (e.g.,
RedHat Linux) these tools are provided in a typical full installation.

Appendix DG2. Documentation

64

DG2.4.1. Emacs/PSGML

 PSGML is the most common and most powerful mode for editing SGML documents. When properly
configured, it will allow you to use Emacs to insert tags and check markup consistancy. You could use it
for HTML as well. Check the PSGML web site (http://www.lysator.liu.se/projects/about_psgml.html)
for downloads, installation instructions, and detailed documentation.

 There is one important thing to note with PSGML: its author assumed that your main SGML DTD
directory would be /usr/local/lib/sgml. If, as in the examples in this chapter, you use
/usr/local/share/sgml, you have to compensate for this, either by setting
SGML_CATALOG_FILES environment variable, or you can customize your PSGML installation (its
manual tells you how).

 Put the following in your ~/.emacs environment file (adjusting the path names to be appropriate for
your system):

; ********** for SGML mode (psgml)

(setq sgml-omittag t)
(setq sgml-shorttag t)
(setq sgml-minimize-attributes nil)
(setq sgml-always-quote-attributes t)
(setq sgml-indent-step 1)
(setq sgml-indent-data t)
(setq sgml-parent-document nil)
(setq sgml-default-dtd-file "./reference.ced")
(setq sgml-exposed-tags nil)
(setq sgml-catalog-files ’("/usr/local/share/sgml/catalog"))
(setq sgml-ecat-files nil)

(autoload ’sgml-mode "psgml" "Major mode to edit SGML files." t)

 and in the same file add an entry for SGML into the (existing) definition for auto-mode-alist:

(setq
 auto-mode-alist
 ’(("\\.sgml$" . sgml-mode)
))

 Currently, each SGML source file has the following block at the end of the file:

<!-- Keep this comment at the end of the file
Local variables:
mode: sgml
sgml-omittag:t
sgml-shorttag:t
sgml-minimize-attributes:nil
sgml-always-quote-attributes:t
sgml-indent-step:1
sgml-indent-data:t

Appendix DG2. Documentation

65

sgml-parent-document:nil
sgml-default-dtd-file:"./reference.ced"
sgml-exposed-tags:nil
sgml-local-catalogs:("/usr/lib/sgml/catalog")
sgml-local-ecat-files:nil
End:
-->

 This will set up a number of editing mode parameters even if you do not set up your ~/.emacs file, but
it is a bit unfortunate, since if you followed the installation instructions above, then the catalog path will
not match your location. Hence you might need to turn off local variables:

(setq inhibit-local-variables t)

 The PostgreSQL distribution includes a parsed DTD definitions file reference.ced. You may find
that when using PSGML, a comfortable way of working with these separate files of book parts is to
insert a proper DOCTYPE declaration while you’re editing them. If you are working on this source, for
instance, it is an appendix chapter, so you would specify the document as an �appendix� instance of a
DocBook document by making the first line look like this:

<!doctype appendix PUBLIC "-//OASIS//DTD DocBook V3.1//EN">

 This means that anything and everything that reads SGML will get it right, and I can verify the
document with nsgmls -s docguide.sgml. (But you need to take out that line before building the entire
documentation set.)

DG2.4.2. Other Emacs modes

 GNU Emacs ships with a different SGML mode, which is not quite as powerful as PSGML, but it’s less
confusing and lighter weight. Also, it offers syntax highlighting (font lock), which can be very helpful.

 Norm Walsh offers a major mode specifically for DocBook
(http://nwalsh.com/emacs/docbookide/index.html) which also has font-lock and a number of features to
reduce typing.

