
A Tour of PostgreSQL Internals

A Tour of PostgreSQL Internals

Tom Lane
Great Bridge, LLC
tgl@sss.pgh.pa.us 1

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

Outline

I’m going to present three separate views of PostgreSQL.

Each view is equally valid but will teach you something different about the beast.

• VIEW 1: Processes and interprocess communication structure

Key ideas: client/server separation, inter-server communication

• VIEW 2: System catalogs and data types

Key ideas: extensibility, compartmentalization

• VIEW 3: Steps of query processing

Key ideas: parse and plan trees, scans and joins, cost estimation

2

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

PostgreSQL processes: client/server communication

Interface
Library

Client
Application

Daemon
Process

Postmaster

Postgres
Server

(Backend)

DB Requests
and Results

via
Library API

Spawn
Server

Process

SQL Queries

Client

and Results

Server Processes

Initial
Connection

Request
and

Authentication

Client Processes

• Multiple client libraries offer different APIs: libpq, ODBC, JDBC,
Perl DBD

• Client libraries insulate client applications from changes in
on-the-wire protocol

3

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

PostgreSQL processes: inter-server communication

Process

Postmaster

Postgres
Server

(Backend)

Spawn
Server

Process

Read/
Write

Shared Memory

Daemon Create

Server Processes Unix System

Disk
Buffers

Disk
Shared

Tables
Shared

Buffers

Kernel

Disk
Storage

4

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

PostgreSQL processes: summary

Pros:

• Hard separation of client and server is good for security/reliability

• Works well in a networked environment

• Portable across most flavors of Unix

Cons:

• Dependence on shared memory for inter-server communication limits scalability

A single server site can’t be spread across multiple machines

• Connection startup overhead is bad for short-duration client tasks

Usual workaround: client-side connection pooling, as in AOLServer for example

5

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

System catalogs and data types: introduction

Postgres is catalog-driven to a much greater extent than most other DBMSes.

• We have the usual sort of system catalogs to describe tables, their
columns,

 their indexes, etc.

• But we also use system catalogs to store information
about datatypes, functions,

 operators, index access methods, and so forth.

• The system can be extended by adding new catalog entries (and writing
the

 underlying code, in the case of adding a function).

6

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

System catalogs and data types: basic catalogs

Basic system catalogs that describe a table:

pg_class: one row for each table in the database, containing name,
owner,

access permissions, number of columns, etc.

pg_attribute: one row for each column of each table, containing name,
data type,

column number, etc.

pg_index: relates a table to its indexes. (Indexes are
tables and so have their own

entries in pg_class and pg_attribute, too.) One row per index, containing
references

to pg_class entries of index and underlying table, plus info about which
columns

of the table the index is computed on and what the index operators are.

Lots of less-important tables, such as pg_relcheck which stores constraint
definitions,

but I’m just hitting the high spots.
7

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

System catalogs and data types: functions

pg_proc: defines functions. Each function has one row that gives its
name,

input argument types, result type, implementation language,
and definition

(either the text, if it’s in an interpreted language,
or a reference to its executable

code, if it’s compiled). Compiled functions
can be statically linked into the server,

or stored in shared libraries
that are dynamically loaded on first use. Compiled

functions are typically written in C, though in theory one could use other choices.

pg_language: defines implementation languages for functions. Languages
with

hard-wired support are internal (statically-linked compiled
code),

C (dynamically-linked compiled code), and SQL (body is one or more
SQL queries).

Optional languages currently include pl/pgsql (PL/SQL-ish),
tcl, and perl, with more

to come. These languages are supported by handlers
that are dynamically-linked

functions --- the core server doesn’t know a
thing about them.

8

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

System catalogs and data types: example functions

C:

int4
square_int4 (int4 x)
{
 return x * x;
}

Compile the above into a shared-library file, then say:

CREATE FUNCTION square(int4) RETURNS int4
AS ’/path/to/square.so’, ’square_int4’
LANGUAGE ’C’;

PL/PGSQL:

CREATE FUNCTION square(int4) RETURNS int4 AS ’begin
return $1 * $1;
end;’ LANGUAGE ’plpgsql’;

9

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

System catalogs and data types: aggregate functions

pg_aggregate: defines aggregate functions like min(),
max(), count(). Aggregates

involve a working-state datatype, an update function,
and a final-output function.

AVG(int4) in pltcl:

-- The working state is a 2-element integer array, sum and count.
-- We use split(n) as a quick-and-dirty way of parsing the input array
-- value, which comes in as a string like ’{1,2}’. There are better ways...

create function tcl_int4_accum(int4[], int4) returns int4[] as ’
 set state [split $1 "{,}"]
 set newsum [expr {[lindex $state 1] + $2}]
 set newcnt [expr {[lindex $state 2] + 1}]
 return "{$newsum,$newcnt}"
’ language ’pltcl’;

create function tcl_int4_avg(int4[]) returns int4 as ’
 set state [split $1 "{,}"]
 if {[lindex $state 2] == 0} { return_null }
 return [expr {[lindex $state 1] / [lindex $state 2]}]
’ language ’pltcl’;

create aggregate tcl_avg (
 basetype = int4, -- input datatype
 sfunc = tcl_int4_accum, -- update function name
 stype = int4[], -- working-state datatype
 finalfunc = tcl_int4_avg, -- final-output function name
 initcond = ’{0,0}’ -- initial value of working state
);

10

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

System catalogs and data types: operators

pg_operator: defines operators that can be used in
expressions.

An operator is mainly just syntactic sugar for a function of one or two
arguments.

Do-it-yourself exponentiation operator:

CREATE FUNCTION mypower(float8, float8) RETURNS float8 AS ’begin
return exp(ln($1) * $2);
end;’ LANGUAGE ’plpgsql’;

CREATE OPERATOR ** (
 procedure = mypower,
 leftarg = float8,
 rightarg = float8);

SELECT 44 ** 2, 81 ** 0.5;
 ?column? | ?column?
----------+----------
 1936 | 9
(1 row)

11

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

System catalogs and data types: data types

pg_type: defines the basic data types that values stored in
tables can have

and that are accepted and returned by operators and functions.

New data types can be invented by making new entries in pg_type.

Example: say your application wants to store coordinates of points in
3-D space.

The built-in type Point won’t do (it’s only 2-D), so you
build a 3-D point datatype.

At minimum, a data type must have two associated functions, which convert
its

internal representation to and from external textual form. Having
written these

functions, you can define the type to Postgres:

CREATE TYPE point3 (
 input = point3in,
 output = point3out,
 internallength = 24, -- space for three float8’s
 alignment = double); -- ensure storage will be aligned properly

12

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

System catalogs and data types: data types

Typically one wants to do more with a datatype than just store and retrieve
values,

so the next step is to add functions and operators that do useful
things with the datatype.

For instance, distance between two points is
a function you’d probably want to have for

your 3-D point type. This is
where things get tedious...

A new datatype can be made indexable by adding entries
to pg_amop and pg_amproc.

These entries
tell the indexing machinery about a set of
comparison operators and

functions that behave in the way an index
access method expects. For example,

to be btree-indexable, entries must
be provided for a datatype’s < <= = > >=

comparison operators, as well as a 3-way sort comparison function.

None of the standard index types are very suitable for 3-D points (R-trees are
geometric,

but only 2-D). In theory you could write a new index access method
for 3-D R-trees

and link it into the system with a new pg_am entry. No one
has actually done

something like that in recent memory, however.

13

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

System catalogs and data types: summary

Pros:

• Extensibility of functions and datatypes is a big win for specialized
applications

Cons:

• Making a new datatype with a usefully rich set of functions is a lot
of work

• System design demands an "arm’s length", "black box" treatment of
objects

For example, MAX() and MIN() aggregate functions are processed the same as all
other

aggregates: they must scan all the data. In the presence of an ordered index,
these

could be implemented more efficiently by looking at the extremal index
value. But

making this happen in a way that isn’t a complete kluge requires
designing a general

representation of a connection between aggregates and
indexes, which is a rather hard

problem. The system design isn’t very
forgiving of partial solutions to issues like this.

14

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

Steps of query processing: overview

Store
User Data

Look up
Object

Definitions

Look up
Rule/View
Definitions

Look up
Statistics

Fetch/

Rewritten Parse Trees

Interface Lib

SQL Queries Query Results

Parse Trees Plan Trees

1

2 3

4

Parser

Rewriter Planner

Executor

Postgres Server

Client

Database
Tables

Key data structures: parse tree, plan tree
15

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

Steps of query processing: parser

Input:

SELECT * FROM tab1, tab2 WHERE tab1.a = tab2.f

Output:

int4 =

tab1.a tab2.f

tab2

SELECT Query

tab1.a
tab1.b
tab1.c
tab2.d
tab2.e
tab2.f

int4
text
float8
text
text
int4

Target List

Join Tree

Qualification

Cross Join

tab1

16

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

Steps of query processing: rewriter

Views are handled by substitution of subqueries into the parse tree.

For example, if tab2 were a view then the rewriter would emit something
like this:

int4 =

tab1.a tab2.f

Qualification

SELECT Query

tab1.a
tab1.b
tab1.c
tab2.d
tab2.e
tab2.f

int4
text
float8
text
text
int4

Target List

Join Tree

Qualification

Cross Join

tab1 SELECT Query
Target List

Join Tree

ON INSERT/UPDATE/DELETE rules require more extensive transformations,

and may produce multiple queries from a single query.
17

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

Steps of query processing: executor

The basic idea of the executor is that it executes a plan tree, which is
a pipelined

demand-pull network of processing nodes. Each node produces
the next tuple

in its output sequence each time it is called. Upper-level
nodes call their

subnodes to get input tuples, from which they compute their
own output tuples.

Bottom-level nodes are scans of physical tables --- either sequential scans

or index scans.

Upper-level nodes are usually join nodes --- nested-loop, merge, and hash
joins

are available. Each join node combines two input tuple streams into
one.

There are also special-purpose node types, such as SORT and AGGREGATE.

18

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

Steps of query processing: executor example

Query:

SELECT SUM(a1)+1 FROM a WHERE a2 < a3

Plan tree:

Running state
for SUM(a1)

+

SUM result 1

a.a1

int4 <

a.a2

Single result tuple of aggregate calculation

a.a3

Aggregate

Executor top level

Working state(s)

Target List

Sequential Scan
Table: a

Target List

Qualification

Equivalent to SELECT a1 FROM a WHERE a2 < a3

19

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

Steps of query processing: executor example

Query:

SELECT DISTINCT a1, b1 FROM a, b WHERE a2 = b2 AND a3 = 42

Plan tree:

Table: a

Index Scan

Qualification: a3 = 42

Target List: a1, a2

Index: a(a3)

Table: b

Index Scan

SELECT b1, b2 FROM b WHERE b2 = $1

Qualification: b2 = $1

Target List: b1, b2

Index: b(b2)

SELECT a1, a2 FROM a WHERE a3 = 42

Nestloop Join

Target List: a1, b1

Qualification: a2 = b2

SELECT a1, b1 FROM a, b WHERE a2 = b2 AND a3 = 42

Current a2 value

Executor top level

Adjacent duplicate tuples removed

Unique

Sort

Sort Columns: a1, b1

Tuples sorted to bring duplicates together

20

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

Steps of query processing: execution of non-SELECT queries

What if the query’s not a SELECT?

Guess what, the plan tree machinery doesn’t really care.

• INSERT is same as SELECT except for where the result rows go.

• For UPDATE/DELETE, the planner adds a hidden targetlist item to return
the TID

 of the selected rows, which the executor’s top level uses to determine
which row

 to update or delete.

So, for planning and most of the executor, all queries look like SELECTs.

Only the executor top level has to behave differently depending on the
query type.

21

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

Steps of query processing: planner

Now that we’ve looked at plan trees, we can talk about the planner.

The basic idea of the planner is cost-estimate-based selection of the best
plan tree

for a given query.

Simple example:

 SELECT * FROM t WHERE f1 < 100

Assuming there is an index on t(f1), two possible execution plans are
considered:

• sequential scan over all of t

• index scan with index restriction f1 < 100

Costs of each plan (in disk page
fetches and CPU time) are estimated and the plan

with lower estimated
cost is selected.

Note that the indexscan is not an automatic winner,
and should not be. The choice

will depend on what fraction of the rows
of t are estimated to be retrieved.

22

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

Steps of query processing: join planning

In a multi-table query, we first estimate costs for sequential scans
and index scans

(where applicable) of each component table, then build up
a join tree in which all

possible pairwise join paths are considered.
The k ’th level of the tree gives us the

cheapest ways to
join any k of
the base tables, and at the top level (level n for

an n -table query) we find the cheapest overall join
path.

If there are a large number of tables involved (more than about ten),
this exhaustive

search of the join space is impractical due to exponential
growth of the number of

possible join paths. In such cases we fall back
on a probabilistic search through a

limited number of alternatives, using a
genetic optimization algorithm.

23

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

Steps of query processing: summary

Pros:

• System usually finds a good query plan without human assistance

Cons:

• Plan is only as good as the system’s cost models and statistics about
user data

It’s possible to choose a spectacularly bad plan if the statistics
are way off base.

We are working on improving the models and
statistics.

• Time to generate a plan can be annoying, particularly for
repetitive queries

Pushing complex queries into plpgsql
functions helps, since plpgsql caches plans.

We are also talking about
creating a more generic plan cache mechanism.

24

31 Oct 2000 Tom Lane

A Tour of PostgreSQL Internals

Summary

PostgreSQL is a complex system that takes a good deal of study to become

familiar with.

If you do study it, you find considerable elegance of design.

... much of the credit for which is due to Stonebraker and his students at
Berkeley,

not to the current developers.

While PostgreSQL has some designed-in limitations, it is also capable of
doing

things that no competing DBMS can.

25

31 Oct 2000 Tom Lane

