Files
blender-addons/mesh_looptools.py
Bastien Montagne 4b44a84b7c Partial fix for T44469: Do not fail because of division by zero.
This only fixes the 'symptoms', root of the issue here is that we get
a weird covariance matrix - Blender's own invert function errors on it,
this script's matrix_invert func does give some result, but in any case
final result is not what one would expect...
2015-06-04 13:40:21 +02:00

4817 lines
179 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
bl_info = {
"name": "LoopTools",
"author": "Bart Crouch",
"version": (4, 6, 6),
"blender": (2, 72, 2),
"location": "View3D > Toolbar and View3D > Specials (W-key)",
"warning": "",
"description": "Mesh modelling toolkit. Several tools to aid modelling",
"wiki_url": "http://wiki.blender.org/index.php/Extensions:2.6/Py/"
"Scripts/Modeling/LoopTools",
"category": "Mesh",
}
import bmesh
import bpy
import collections
import mathutils
import math
from bpy_extras import view3d_utils
##########################################
####### General functions ################
##########################################
# used by all tools to improve speed on reruns
looptools_cache = {}
def get_grease_pencil(object, context):
gp = object.grease_pencil
if not gp:
gp = context.scene.grease_pencil
return gp
# force a full recalculation next time
def cache_delete(tool):
if tool in looptools_cache:
del looptools_cache[tool]
# check cache for stored information
def cache_read(tool, object, bm, input_method, boundaries):
# current tool not cached yet
if tool not in looptools_cache:
return(False, False, False, False, False)
# check if selected object didn't change
if object.name != looptools_cache[tool]["object"]:
return(False, False, False, False, False)
# check if input didn't change
if input_method != looptools_cache[tool]["input_method"]:
return(False, False, False, False, False)
if boundaries != looptools_cache[tool]["boundaries"]:
return(False, False, False, False, False)
modifiers = [mod.name for mod in object.modifiers if mod.show_viewport \
and mod.type == 'MIRROR']
if modifiers != looptools_cache[tool]["modifiers"]:
return(False, False, False, False, False)
input = [v.index for v in bm.verts if v.select and not v.hide]
if input != looptools_cache[tool]["input"]:
return(False, False, False, False, False)
# reading values
single_loops = looptools_cache[tool]["single_loops"]
loops = looptools_cache[tool]["loops"]
derived = looptools_cache[tool]["derived"]
mapping = looptools_cache[tool]["mapping"]
return(True, single_loops, loops, derived, mapping)
# store information in the cache
def cache_write(tool, object, bm, input_method, boundaries, single_loops,
loops, derived, mapping):
# clear cache of current tool
if tool in looptools_cache:
del looptools_cache[tool]
# prepare values to be saved to cache
input = [v.index for v in bm.verts if v.select and not v.hide]
modifiers = [mod.name for mod in object.modifiers if mod.show_viewport \
and mod.type == 'MIRROR']
# update cache
looptools_cache[tool] = {"input": input, "object": object.name,
"input_method": input_method, "boundaries": boundaries,
"single_loops": single_loops, "loops": loops,
"derived": derived, "mapping": mapping, "modifiers": modifiers}
# calculates natural cubic splines through all given knots
def calculate_cubic_splines(bm_mod, tknots, knots):
# hack for circular loops
if knots[0] == knots[-1] and len(knots) > 1:
circular = True
k_new1 = []
for k in range(-1, -5, -1):
if k - 1 < -len(knots):
k += len(knots)
k_new1.append(knots[k-1])
k_new2 = []
for k in range(4):
if k + 1 > len(knots) - 1:
k -= len(knots)
k_new2.append(knots[k+1])
for k in k_new1:
knots.insert(0, k)
for k in k_new2:
knots.append(k)
t_new1 = []
total1 = 0
for t in range(-1, -5, -1):
if t - 1 < -len(tknots):
t += len(tknots)
total1 += tknots[t] - tknots[t-1]
t_new1.append(tknots[0] - total1)
t_new2 = []
total2 = 0
for t in range(4):
if t + 1 > len(tknots) - 1:
t -= len(tknots)
total2 += tknots[t+1] - tknots[t]
t_new2.append(tknots[-1] + total2)
for t in t_new1:
tknots.insert(0, t)
for t in t_new2:
tknots.append(t)
else:
circular = False
# end of hack
n = len(knots)
if n < 2:
return False
x = tknots[:]
locs = [bm_mod.verts[k].co[:] for k in knots]
result = []
for j in range(3):
a = []
for i in locs:
a.append(i[j])
h = []
for i in range(n-1):
if x[i+1] - x[i] == 0:
h.append(1e-8)
else:
h.append(x[i+1] - x[i])
q = [False]
for i in range(1, n-1):
q.append(3/h[i]*(a[i+1]-a[i]) - 3/h[i-1]*(a[i]-a[i-1]))
l = [1.0]
u = [0.0]
z = [0.0]
for i in range(1, n-1):
l.append(2*(x[i+1]-x[i-1]) - h[i-1]*u[i-1])
if l[i] == 0:
l[i] = 1e-8
u.append(h[i] / l[i])
z.append((q[i] - h[i-1] * z[i-1]) / l[i])
l.append(1.0)
z.append(0.0)
b = [False for i in range(n-1)]
c = [False for i in range(n)]
d = [False for i in range(n-1)]
c[n-1] = 0.0
for i in range(n-2, -1, -1):
c[i] = z[i] - u[i]*c[i+1]
b[i] = (a[i+1]-a[i])/h[i] - h[i]*(c[i+1]+2*c[i])/3
d[i] = (c[i+1]-c[i]) / (3*h[i])
for i in range(n-1):
result.append([a[i], b[i], c[i], d[i], x[i]])
splines = []
for i in range(len(knots)-1):
splines.append([result[i], result[i+n-1], result[i+(n-1)*2]])
if circular: # cleaning up after hack
knots = knots[4:-4]
tknots = tknots[4:-4]
return(splines)
# calculates linear splines through all given knots
def calculate_linear_splines(bm_mod, tknots, knots):
splines = []
for i in range(len(knots)-1):
a = bm_mod.verts[knots[i]].co
b = bm_mod.verts[knots[i+1]].co
d = b-a
t = tknots[i]
u = tknots[i+1]-t
splines.append([a, d, t, u]) # [locStart, locDif, tStart, tDif]
return(splines)
# calculate a best-fit plane to the given vertices
def calculate_plane(bm_mod, loop, method="best_fit", object=False):
# getting the vertex locations
locs = [bm_mod.verts[v].co.copy() for v in loop[0]]
# calculating the center of masss
com = mathutils.Vector()
for loc in locs:
com += loc
com /= len(locs)
x, y, z = com
if method == 'best_fit':
# creating the covariance matrix
mat = mathutils.Matrix(((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
))
for loc in locs:
mat[0][0] += (loc[0]-x)**2
mat[1][0] += (loc[0]-x)*(loc[1]-y)
mat[2][0] += (loc[0]-x)*(loc[2]-z)
mat[0][1] += (loc[1]-y)*(loc[0]-x)
mat[1][1] += (loc[1]-y)**2
mat[2][1] += (loc[1]-y)*(loc[2]-z)
mat[0][2] += (loc[2]-z)*(loc[0]-x)
mat[1][2] += (loc[2]-z)*(loc[1]-y)
mat[2][2] += (loc[2]-z)**2
# calculating the normal to the plane
normal = False
try:
mat = matrix_invert(mat)
except:
ax = 2
if math.fabs(sum(mat[0])) < math.fabs(sum(mat[1])):
if math.fabs(sum(mat[0])) < math.fabs(sum(mat[2])):
ax = 0
elif math.fabs(sum(mat[1])) < math.fabs(sum(mat[2])):
ax = 1
if ax == 0:
normal = mathutils.Vector((1.0, 0.0, 0.0))
elif ax == 1:
normal = mathutils.Vector((0.0, 1.0, 0.0))
else:
normal = mathutils.Vector((0.0, 0.0, 1.0))
if not normal:
# warning! this is different from .normalize()
itermax = 500
vec2 = mathutils.Vector((1.0, 1.0, 1.0))
for i in range(itermax):
vec = vec2
vec2 = mat * vec
if vec2.length != 0:
vec2 /= vec2.length
if vec2 == vec:
break
if vec2.length == 0:
vec2 = mathutils.Vector((1.0, 1.0, 1.0))
normal = vec2
elif method == 'normal':
# averaging the vertex normals
v_normals = [bm_mod.verts[v].normal for v in loop[0]]
normal = mathutils.Vector()
for v_normal in v_normals:
normal += v_normal
normal /= len(v_normals)
normal.normalize()
elif method == 'view':
# calculate view normal
rotation = bpy.context.space_data.region_3d.view_matrix.to_3x3().\
inverted()
normal = rotation * mathutils.Vector((0.0, 0.0, 1.0))
if object:
normal = object.matrix_world.inverted().to_euler().to_matrix() * \
normal
return(com, normal)
# calculate splines based on given interpolation method (controller function)
def calculate_splines(interpolation, bm_mod, tknots, knots):
if interpolation == 'cubic':
splines = calculate_cubic_splines(bm_mod, tknots, knots[:])
else: # interpolations == 'linear'
splines = calculate_linear_splines(bm_mod, tknots, knots[:])
return(splines)
# check loops and only return valid ones
def check_loops(loops, mapping, bm_mod):
valid_loops = []
for loop, circular in loops:
# loop needs to have at least 3 vertices
if len(loop) < 3:
continue
# loop needs at least 1 vertex in the original, non-mirrored mesh
if mapping:
all_virtual = True
for vert in loop:
if mapping[vert] > -1:
all_virtual = False
break
if all_virtual:
continue
# vertices can not all be at the same location
stacked = True
for i in range(len(loop) - 1):
if (bm_mod.verts[loop[i]].co - \
bm_mod.verts[loop[i+1]].co).length > 1e-6:
stacked = False
break
if stacked:
continue
# passed all tests, loop is valid
valid_loops.append([loop, circular])
return(valid_loops)
# input: bmesh, output: dict with the edge-key as key and face-index as value
def dict_edge_faces(bm):
edge_faces = dict([[edgekey(edge), []] for edge in bm.edges if \
not edge.hide])
for face in bm.faces:
if face.hide:
continue
for key in face_edgekeys(face):
edge_faces[key].append(face.index)
return(edge_faces)
# input: bmesh (edge-faces optional), output: dict with face-face connections
def dict_face_faces(bm, edge_faces=False):
if not edge_faces:
edge_faces = dict_edge_faces(bm)
connected_faces = dict([[face.index, []] for face in bm.faces if \
not face.hide])
for face in bm.faces:
if face.hide:
continue
for edge_key in face_edgekeys(face):
for connected_face in edge_faces[edge_key]:
if connected_face == face.index:
continue
connected_faces[face.index].append(connected_face)
return(connected_faces)
# input: bmesh, output: dict with the vert index as key and edge-keys as value
def dict_vert_edges(bm):
vert_edges = dict([[v.index, []] for v in bm.verts if not v.hide])
for edge in bm.edges:
if edge.hide:
continue
ek = edgekey(edge)
for vert in ek:
vert_edges[vert].append(ek)
return(vert_edges)
# input: bmesh, output: dict with the vert index as key and face index as value
def dict_vert_faces(bm):
vert_faces = dict([[v.index, []] for v in bm.verts if not v.hide])
for face in bm.faces:
if not face.hide:
for vert in face.verts:
vert_faces[vert.index].append(face.index)
return(vert_faces)
# input: list of edge-keys, output: dictionary with vertex-vertex connections
def dict_vert_verts(edge_keys):
# create connection data
vert_verts = {}
for ek in edge_keys:
for i in range(2):
if ek[i] in vert_verts:
vert_verts[ek[i]].append(ek[1-i])
else:
vert_verts[ek[i]] = [ek[1-i]]
return(vert_verts)
# return the edgekey ([v1.index, v2.index]) of a bmesh edge
def edgekey(edge):
return(tuple(sorted([edge.verts[0].index, edge.verts[1].index])))
# returns the edgekeys of a bmesh face
def face_edgekeys(face):
return([tuple(sorted([edge.verts[0].index, edge.verts[1].index])) for \
edge in face.edges])
# calculate input loops
def get_connected_input(object, bm, scene, input):
# get mesh with modifiers applied
derived, bm_mod = get_derived_bmesh(object, bm, scene)
# calculate selected loops
edge_keys = [edgekey(edge) for edge in bm_mod.edges if \
edge.select and not edge.hide]
loops = get_connected_selections(edge_keys)
# if only selected loops are needed, we're done
if input == 'selected':
return(derived, bm_mod, loops)
# elif input == 'all':
loops = get_parallel_loops(bm_mod, loops)
return(derived, bm_mod, loops)
# sorts all edge-keys into a list of loops
def get_connected_selections(edge_keys):
# create connection data
vert_verts = dict_vert_verts(edge_keys)
# find loops consisting of connected selected edges
loops = []
while len(vert_verts) > 0:
loop = [iter(vert_verts.keys()).__next__()]
growing = True
flipped = False
# extend loop
while growing:
# no more connection data for current vertex
if loop[-1] not in vert_verts:
if not flipped:
loop.reverse()
flipped = True
else:
growing = False
else:
extended = False
for i, next_vert in enumerate(vert_verts[loop[-1]]):
if next_vert not in loop:
vert_verts[loop[-1]].pop(i)
if len(vert_verts[loop[-1]]) == 0:
del vert_verts[loop[-1]]
# remove connection both ways
if next_vert in vert_verts:
if len(vert_verts[next_vert]) == 1:
del vert_verts[next_vert]
else:
vert_verts[next_vert].remove(loop[-1])
loop.append(next_vert)
extended = True
break
if not extended:
# found one end of the loop, continue with next
if not flipped:
loop.reverse()
flipped = True
# found both ends of the loop, stop growing
else:
growing = False
# check if loop is circular
if loop[0] in vert_verts:
if loop[-1] in vert_verts[loop[0]]:
# is circular
if len(vert_verts[loop[0]]) == 1:
del vert_verts[loop[0]]
else:
vert_verts[loop[0]].remove(loop[-1])
if len(vert_verts[loop[-1]]) == 1:
del vert_verts[loop[-1]]
else:
vert_verts[loop[-1]].remove(loop[0])
loop = [loop, True]
else:
# not circular
loop = [loop, False]
else:
# not circular
loop = [loop, False]
loops.append(loop)
return(loops)
# get the derived mesh data, if there is a mirror modifier
def get_derived_bmesh(object, bm, scene):
# check for mirror modifiers
if 'MIRROR' in [mod.type for mod in object.modifiers if mod.show_viewport]:
derived = True
# disable other modifiers
show_viewport = [mod.name for mod in object.modifiers if \
mod.show_viewport]
for mod in object.modifiers:
if mod.type != 'MIRROR':
mod.show_viewport = False
# get derived mesh
bm_mod = bmesh.new()
mesh_mod = object.to_mesh(scene, True, 'PREVIEW')
bm_mod.from_mesh(mesh_mod)
bpy.context.blend_data.meshes.remove(mesh_mod)
# re-enable other modifiers
for mod_name in show_viewport:
object.modifiers[mod_name].show_viewport = True
# no mirror modifiers, so no derived mesh necessary
else:
derived = False
bm_mod = bm
bm_mod.verts.ensure_lookup_table()
bm_mod.edges.ensure_lookup_table()
bm_mod.faces.ensure_lookup_table()
return(derived, bm_mod)
# return a mapping of derived indices to indices
def get_mapping(derived, bm, bm_mod, single_vertices, full_search, loops):
if not derived:
return(False)
if full_search:
verts = [v for v in bm.verts if not v.hide]
else:
verts = [v for v in bm.verts if v.select and not v.hide]
# non-selected vertices around single vertices also need to be mapped
if single_vertices:
mapping = dict([[vert, -1] for vert in single_vertices])
verts_mod = [bm_mod.verts[vert] for vert in single_vertices]
for v in verts:
for v_mod in verts_mod:
if (v.co - v_mod.co).length < 1e-6:
mapping[v_mod.index] = v.index
break
real_singles = [v_real for v_real in mapping.values() if v_real>-1]
verts_indices = [vert.index for vert in verts]
for face in [face for face in bm.faces if not face.select \
and not face.hide]:
for vert in face.verts:
if vert.index in real_singles:
for v in face.verts:
if not v.index in verts_indices:
if v not in verts:
verts.append(v)
break
# create mapping of derived indices to indices
mapping = dict([[vert, -1] for loop in loops for vert in loop[0]])
if single_vertices:
for single in single_vertices:
mapping[single] = -1
verts_mod = [bm_mod.verts[i] for i in mapping.keys()]
for v in verts:
for v_mod in verts_mod:
if (v.co - v_mod.co).length < 1e-6:
mapping[v_mod.index] = v.index
verts_mod.remove(v_mod)
break
return(mapping)
# calculate the determinant of a matrix
def matrix_determinant(m):
determinant = m[0][0] * m[1][1] * m[2][2] + m[0][1] * m[1][2] * m[2][0] \
+ m[0][2] * m[1][0] * m[2][1] - m[0][2] * m[1][1] * m[2][0] \
- m[0][1] * m[1][0] * m[2][2] - m[0][0] * m[1][2] * m[2][1]
return(determinant)
# custom matrix inversion, to provide higher precision than the built-in one
def matrix_invert(m):
r = mathutils.Matrix((
(m[1][1]*m[2][2] - m[1][2]*m[2][1], m[0][2]*m[2][1] - m[0][1]*m[2][2],
m[0][1]*m[1][2] - m[0][2]*m[1][1]),
(m[1][2]*m[2][0] - m[1][0]*m[2][2], m[0][0]*m[2][2] - m[0][2]*m[2][0],
m[0][2]*m[1][0] - m[0][0]*m[1][2]),
(m[1][0]*m[2][1] - m[1][1]*m[2][0], m[0][1]*m[2][0] - m[0][0]*m[2][1],
m[0][0]*m[1][1] - m[0][1]*m[1][0])))
return (r * (1 / matrix_determinant(m)))
# returns a list of all loops parallel to the input, input included
def get_parallel_loops(bm_mod, loops):
# get required dictionaries
edge_faces = dict_edge_faces(bm_mod)
connected_faces = dict_face_faces(bm_mod, edge_faces)
# turn vertex loops into edge loops
edgeloops = []
for loop in loops:
edgeloop = [[sorted([loop[0][i], loop[0][i+1]]) for i in \
range(len(loop[0])-1)], loop[1]]
if loop[1]: # circular
edgeloop[0].append(sorted([loop[0][-1], loop[0][0]]))
edgeloops.append(edgeloop[:])
# variables to keep track while iterating
all_edgeloops = []
has_branches = False
for loop in edgeloops:
# initialise with original loop
all_edgeloops.append(loop[0])
newloops = [loop[0]]
verts_used = []
for edge in loop[0]:
if edge[0] not in verts_used:
verts_used.append(edge[0])
if edge[1] not in verts_used:
verts_used.append(edge[1])
# find parallel loops
while len(newloops) > 0:
side_a = []
side_b = []
for i in newloops[-1]:
i = tuple(i)
forbidden_side = False
if not i in edge_faces:
# weird input with branches
has_branches = True
break
for face in edge_faces[i]:
if len(side_a) == 0 and forbidden_side != "a":
side_a.append(face)
if forbidden_side:
break
forbidden_side = "a"
continue
elif side_a[-1] in connected_faces[face] and \
forbidden_side != "a":
side_a.append(face)
if forbidden_side:
break
forbidden_side = "a"
continue
if len(side_b) == 0 and forbidden_side != "b":
side_b.append(face)
if forbidden_side:
break
forbidden_side = "b"
continue
elif side_b[-1] in connected_faces[face] and \
forbidden_side != "b":
side_b.append(face)
if forbidden_side:
break
forbidden_side = "b"
continue
if has_branches:
# weird input with branches
break
newloops.pop(-1)
sides = []
if side_a:
sides.append(side_a)
if side_b:
sides.append(side_b)
for side in sides:
extraloop = []
for fi in side:
for key in face_edgekeys(bm_mod.faces[fi]):
if key[0] not in verts_used and key[1] not in \
verts_used:
extraloop.append(key)
break
if extraloop:
for key in extraloop:
for new_vert in key:
if new_vert not in verts_used:
verts_used.append(new_vert)
newloops.append(extraloop)
all_edgeloops.append(extraloop)
# input contains branches, only return selected loop
if has_branches:
return(loops)
# change edgeloops into normal loops
loops = []
for edgeloop in all_edgeloops:
loop = []
# grow loop by comparing vertices between consecutive edge-keys
for i in range(len(edgeloop)-1):
for vert in range(2):
if edgeloop[i][vert] in edgeloop[i+1]:
loop.append(edgeloop[i][vert])
break
if loop:
# add starting vertex
for vert in range(2):
if edgeloop[0][vert] != loop[0]:
loop = [edgeloop[0][vert]] + loop
break
# add ending vertex
for vert in range(2):
if edgeloop[-1][vert] != loop[-1]:
loop.append(edgeloop[-1][vert])
break
# check if loop is circular
if loop[0] == loop[-1]:
circular = True
loop = loop[:-1]
else:
circular = False
loops.append([loop, circular])
return(loops)
# gather initial data
def initialise():
global_undo = bpy.context.user_preferences.edit.use_global_undo
bpy.context.user_preferences.edit.use_global_undo = False
object = bpy.context.active_object
if 'MIRROR' in [mod.type for mod in object.modifiers if mod.show_viewport]:
# ensure that selection is synced for the derived mesh
bpy.ops.object.mode_set(mode='OBJECT')
bpy.ops.object.mode_set(mode='EDIT')
bm = bmesh.from_edit_mesh(object.data)
bm.verts.ensure_lookup_table()
bm.edges.ensure_lookup_table()
bm.faces.ensure_lookup_table()
return(global_undo, object, bm)
# move the vertices to their new locations
def move_verts(object, bm, mapping, move, lock, influence):
if lock:
lock_x, lock_y, lock_z = lock
orientation = bpy.context.space_data.transform_orientation
custom = bpy.context.space_data.current_orientation
if custom:
mat = custom.matrix.to_4x4().inverted() * object.matrix_world.copy()
elif orientation == 'LOCAL':
mat = mathutils.Matrix.Identity(4)
elif orientation == 'VIEW':
mat = bpy.context.region_data.view_matrix.copy() * \
object.matrix_world.copy()
else: # orientation == 'GLOBAL'
mat = object.matrix_world.copy()
mat_inv = mat.inverted()
for loop in move:
for index, loc in loop:
if mapping:
if mapping[index] == -1:
continue
else:
index = mapping[index]
if lock:
delta = (loc - bm.verts[index].co) * mat_inv
if lock_x:
delta[0] = 0
if lock_y:
delta[1] = 0
if lock_z:
delta[2] = 0
delta = delta * mat
loc = bm.verts[index].co + delta
if influence < 0:
new_loc = loc
else:
new_loc = loc*(influence/100) + \
bm.verts[index].co*((100-influence)/100)
bm.verts[index].co = new_loc
bm.normal_update()
object.data.update()
bm.verts.ensure_lookup_table()
bm.edges.ensure_lookup_table()
bm.faces.ensure_lookup_table()
# load custom tool settings
def settings_load(self):
lt = bpy.context.window_manager.looptools
tool = self.name.split()[0].lower()
keys = self.as_keywords().keys()
for key in keys:
setattr(self, key, getattr(lt, tool + "_" + key))
# store custom tool settings
def settings_write(self):
lt = bpy.context.window_manager.looptools
tool = self.name.split()[0].lower()
keys = self.as_keywords().keys()
for key in keys:
setattr(lt, tool + "_" + key, getattr(self, key))
# clean up and set settings back to original state
def terminate(global_undo):
# update editmesh cached data
obj = bpy.context.active_object
if obj.mode == 'EDIT':
bmesh.update_edit_mesh(obj.data, tessface=True, destructive=True)
bpy.context.user_preferences.edit.use_global_undo = global_undo
##########################################
####### Bridge functions #################
##########################################
# calculate a cubic spline through the middle section of 4 given coordinates
def bridge_calculate_cubic_spline(bm, coordinates):
result = []
x = [0, 1, 2, 3]
for j in range(3):
a = []
for i in coordinates:
a.append(float(i[j]))
h = []
for i in range(3):
h.append(x[i+1]-x[i])
q = [False]
for i in range(1,3):
q.append(3.0/h[i]*(a[i+1]-a[i])-3.0/h[i-1]*(a[i]-a[i-1]))
l = [1.0]
u = [0.0]
z = [0.0]
for i in range(1,3):
l.append(2.0*(x[i+1]-x[i-1])-h[i-1]*u[i-1])
u.append(h[i]/l[i])
z.append((q[i]-h[i-1]*z[i-1])/l[i])
l.append(1.0)
z.append(0.0)
b = [False for i in range(3)]
c = [False for i in range(4)]
d = [False for i in range(3)]
c[3] = 0.0
for i in range(2,-1,-1):
c[i] = z[i]-u[i]*c[i+1]
b[i] = (a[i+1]-a[i])/h[i]-h[i]*(c[i+1]+2.0*c[i])/3.0
d[i] = (c[i+1]-c[i])/(3.0*h[i])
for i in range(3):
result.append([a[i], b[i], c[i], d[i], x[i]])
spline = [result[1], result[4], result[7]]
return(spline)
# return a list with new vertex location vectors, a list with face vertex
# integers, and the highest vertex integer in the virtual mesh
def bridge_calculate_geometry(bm, lines, vertex_normals, segments,
interpolation, cubic_strength, min_width, max_vert_index):
new_verts = []
faces = []
# calculate location based on interpolation method
def get_location(line, segment, splines):
v1 = bm.verts[lines[line][0]].co
v2 = bm.verts[lines[line][1]].co
if interpolation == 'linear':
return v1 + (segment/segments) * (v2-v1)
else: # interpolation == 'cubic'
m = (segment/segments)
ax,bx,cx,dx,tx = splines[line][0]
x = ax+bx*m+cx*m**2+dx*m**3
ay,by,cy,dy,ty = splines[line][1]
y = ay+by*m+cy*m**2+dy*m**3
az,bz,cz,dz,tz = splines[line][2]
z = az+bz*m+cz*m**2+dz*m**3
return mathutils.Vector((x, y, z))
# no interpolation needed
if segments == 1:
for i, line in enumerate(lines):
if i < len(lines)-1:
faces.append([line[0], lines[i+1][0], lines[i+1][1], line[1]])
# more than 1 segment, interpolate
else:
# calculate splines (if necessary) once, so no recalculations needed
if interpolation == 'cubic':
splines = []
for line in lines:
v1 = bm.verts[line[0]].co
v2 = bm.verts[line[1]].co
size = (v2-v1).length * cubic_strength
splines.append(bridge_calculate_cubic_spline(bm,
[v1+size*vertex_normals[line[0]], v1, v2,
v2+size*vertex_normals[line[1]]]))
else:
splines = False
# create starting situation
virtual_width = [(bm.verts[lines[i][0]].co -
bm.verts[lines[i+1][0]].co).length for i
in range(len(lines)-1)]
new_verts = [get_location(0, seg, splines) for seg in range(1,
segments)]
first_line_indices = [i for i in range(max_vert_index+1,
max_vert_index+segments)]
prev_verts = new_verts[:] # vertex locations of verts on previous line
prev_vert_indices = first_line_indices[:]
max_vert_index += segments - 1 # highest vertex index in virtual mesh
next_verts = [] # vertex locations of verts on current line
next_vert_indices = []
for i, line in enumerate(lines):
if i < len(lines)-1:
v1 = line[0]
v2 = lines[i+1][0]
end_face = True
for seg in range(1, segments):
loc1 = prev_verts[seg-1]
loc2 = get_location(i+1, seg, splines)
if (loc1-loc2).length < (min_width/100)*virtual_width[i] \
and line[1]==lines[i+1][1]:
# triangle, no new vertex
faces.append([v1, v2, prev_vert_indices[seg-1],
prev_vert_indices[seg-1]])
next_verts += prev_verts[seg-1:]
next_vert_indices += prev_vert_indices[seg-1:]
end_face = False
break
else:
if i == len(lines)-2 and lines[0] == lines[-1]:
# quad with first line, no new vertex
faces.append([v1, v2, first_line_indices[seg-1],
prev_vert_indices[seg-1]])
v2 = first_line_indices[seg-1]
v1 = prev_vert_indices[seg-1]
else:
# quad, add new vertex
max_vert_index += 1
faces.append([v1, v2, max_vert_index,
prev_vert_indices[seg-1]])
v2 = max_vert_index
v1 = prev_vert_indices[seg-1]
new_verts.append(loc2)
next_verts.append(loc2)
next_vert_indices.append(max_vert_index)
if end_face:
faces.append([v1, v2, lines[i+1][1], line[1]])
prev_verts = next_verts[:]
prev_vert_indices = next_vert_indices[:]
next_verts = []
next_vert_indices = []
return(new_verts, faces, max_vert_index)
# calculate lines (list of lists, vertex indices) that are used for bridging
def bridge_calculate_lines(bm, loops, mode, twist, reverse):
lines = []
loop1, loop2 = [i[0] for i in loops]
loop1_circular, loop2_circular = [i[1] for i in loops]
circular = loop1_circular or loop2_circular
circle_full = False
# calculate loop centers
centers = []
for loop in [loop1, loop2]:
center = mathutils.Vector()
for vertex in loop:
center += bm.verts[vertex].co
center /= len(loop)
centers.append(center)
for i, loop in enumerate([loop1, loop2]):
for vertex in loop:
if bm.verts[vertex].co == centers[i]:
# prevent zero-length vectors in angle comparisons
centers[i] += mathutils.Vector((0.01, 0, 0))
break
center1, center2 = centers
# calculate the normals of the virtual planes that the loops are on
normals = []
normal_plurity = False
for i, loop in enumerate([loop1, loop2]):
# covariance matrix
mat = mathutils.Matrix(((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(0.0, 0.0, 0.0)))
x, y, z = centers[i]
for loc in [bm.verts[vertex].co for vertex in loop]:
mat[0][0] += (loc[0]-x)**2
mat[1][0] += (loc[0]-x)*(loc[1]-y)
mat[2][0] += (loc[0]-x)*(loc[2]-z)
mat[0][1] += (loc[1]-y)*(loc[0]-x)
mat[1][1] += (loc[1]-y)**2
mat[2][1] += (loc[1]-y)*(loc[2]-z)
mat[0][2] += (loc[2]-z)*(loc[0]-x)
mat[1][2] += (loc[2]-z)*(loc[1]-y)
mat[2][2] += (loc[2]-z)**2
# plane normal
normal = False
if sum(mat[0]) < 1e-6 or sum(mat[1]) < 1e-6 or sum(mat[2]) < 1e-6:
normal_plurity = True
try:
mat.invert()
except:
if sum(mat[0]) == 0:
normal = mathutils.Vector((1.0, 0.0, 0.0))
elif sum(mat[1]) == 0:
normal = mathutils.Vector((0.0, 1.0, 0.0))
elif sum(mat[2]) == 0:
normal = mathutils.Vector((0.0, 0.0, 1.0))
if not normal:
# warning! this is different from .normalize()
itermax = 500
iter = 0
vec = mathutils.Vector((1.0, 1.0, 1.0))
vec2 = (mat * vec)/(mat * vec).length
while vec != vec2 and iter<itermax:
iter+=1
vec = vec2
vec2 = mat * vec
if vec2.length != 0:
vec2 /= vec2.length
if vec2.length == 0:
vec2 = mathutils.Vector((1.0, 1.0, 1.0))
normal = vec2
normals.append(normal)
# have plane normals face in the same direction (maximum angle: 90 degrees)
if ((center1 + normals[0]) - center2).length < \
((center1 - normals[0]) - center2).length:
normals[0].negate()
if ((center2 + normals[1]) - center1).length > \
((center2 - normals[1]) - center1).length:
normals[1].negate()
# rotation matrix, representing the difference between the plane normals
axis = normals[0].cross(normals[1])
axis = mathutils.Vector([loc if abs(loc) > 1e-8 else 0 for loc in axis])
if axis.angle(mathutils.Vector((0, 0, 1)), 0) > 1.5707964:
axis.negate()
angle = normals[0].dot(normals[1])
rotation_matrix = mathutils.Matrix.Rotation(angle, 4, axis)
# if circular, rotate loops so they are aligned
if circular:
# make sure loop1 is the circular one (or both are circular)
if loop2_circular and not loop1_circular:
loop1_circular, loop2_circular = True, False
loop1, loop2 = loop2, loop1
# match start vertex of loop1 with loop2
target_vector = bm.verts[loop2[0]].co - center2
dif_angles = [[(rotation_matrix * (bm.verts[vertex].co - center1)
).angle(target_vector, 0), False, i] for
i, vertex in enumerate(loop1)]
dif_angles.sort()
if len(loop1) != len(loop2):
angle_limit = dif_angles[0][0] * 1.2 # 20% margin
dif_angles = [[(bm.verts[loop2[0]].co - \
bm.verts[loop1[index]].co).length, angle, index] for \
angle, distance, index in dif_angles if angle <= angle_limit]
dif_angles.sort()
loop1 = loop1[dif_angles[0][2]:] + loop1[:dif_angles[0][2]]
# have both loops face the same way
if normal_plurity and not circular:
second_to_first, second_to_second, second_to_last = \
[(bm.verts[loop1[1]].co - center1).\
angle(bm.verts[loop2[i]].co - center2) for i in [0, 1, -1]]
last_to_first, last_to_second = [(bm.verts[loop1[-1]].co - \
center1).angle(bm.verts[loop2[i]].co - center2) for \
i in [0, 1]]
if (min(last_to_first, last_to_second)*1.1 < min(second_to_first, \
second_to_second)) or (loop2_circular and second_to_last*1.1 < \
min(second_to_first, second_to_second)):
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
else:
angle = (bm.verts[loop1[0]].co - center1).\
cross(bm.verts[loop1[1]].co - center1).angle(normals[0], 0)
target_angle = (bm.verts[loop2[0]].co - center2).\
cross(bm.verts[loop2[1]].co - center2).angle(normals[1], 0)
limit = 1.5707964 # 0.5*pi, 90 degrees
if not ((angle > limit and target_angle > limit) or \
(angle < limit and target_angle < limit)):
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
elif normals[0].angle(normals[1]) > limit:
loop1.reverse()
if circular:
loop1 = [loop1[-1]] + loop1[:-1]
# both loops have the same length
if len(loop1) == len(loop2):
# manual override
if twist:
if abs(twist) < len(loop1):
loop1 = loop1[twist:]+loop1[:twist]
if reverse:
loop1.reverse()
lines.append([loop1[0], loop2[0]])
for i in range(1, len(loop1)):
lines.append([loop1[i], loop2[i]])
# loops of different lengths
else:
# make loop1 longest loop
if len(loop2) > len(loop1):
loop1, loop2 = loop2, loop1
loop1_circular, loop2_circular = loop2_circular, loop1_circular
# manual override
if twist:
if abs(twist) < len(loop1):
loop1 = loop1[twist:]+loop1[:twist]
if reverse:
loop1.reverse()
# shortest angle difference doesn't always give correct start vertex
if loop1_circular and not loop2_circular:
shifting = 1
while shifting:
if len(loop1) - shifting < len(loop2):
shifting = False
break
to_last, to_first = [(rotation_matrix *
(bm.verts[loop1[-1]].co - center1)).angle((bm.\
verts[loop2[i]].co - center2), 0) for i in [-1, 0]]
if to_first < to_last:
loop1 = [loop1[-1]] + loop1[:-1]
shifting += 1
else:
shifting = False
break
# basic shortest side first
if mode == 'basic':
lines.append([loop1[0], loop2[0]])
for i in range(1, len(loop1)):
if i >= len(loop2) - 1:
# triangles
lines.append([loop1[i], loop2[-1]])
else:
# quads
lines.append([loop1[i], loop2[i]])
# shortest edge algorithm
else: # mode == 'shortest'
lines.append([loop1[0], loop2[0]])
prev_vert2 = 0
for i in range(len(loop1) -1):
if prev_vert2 == len(loop2) - 1 and not loop2_circular:
# force triangles, reached end of loop2
tri, quad = 0, 1
elif prev_vert2 == len(loop2) - 1 and loop2_circular:
# at end of loop2, but circular, so check with first vert
tri, quad = [(bm.verts[loop1[i+1]].co -
bm.verts[loop2[j]].co).length
for j in [prev_vert2, 0]]
circle_full = 2
elif len(loop1) - 1 - i == len(loop2) - 1 - prev_vert2 and \
not circle_full:
# force quads, otherwise won't make it to end of loop2
tri, quad = 1, 0
else:
# calculate if tri or quad gives shortest edge
tri, quad = [(bm.verts[loop1[i+1]].co -
bm.verts[loop2[j]].co).length
for j in range(prev_vert2, prev_vert2+2)]
# triangle
if tri < quad:
lines.append([loop1[i+1], loop2[prev_vert2]])
if circle_full == 2:
circle_full = False
# quad
elif not circle_full:
lines.append([loop1[i+1], loop2[prev_vert2+1]])
prev_vert2 += 1
# quad to first vertex of loop2
else:
lines.append([loop1[i+1], loop2[0]])
prev_vert2 = 0
circle_full = True
# final face for circular loops
if loop1_circular and loop2_circular:
lines.append([loop1[0], loop2[0]])
return(lines)
# calculate number of segments needed
def bridge_calculate_segments(bm, lines, loops, segments):
# return if amount of segments is set by user
if segments != 0:
return segments
# edge lengths
average_edge_length = [(bm.verts[vertex].co - \
bm.verts[loop[0][i+1]].co).length for loop in loops for \
i, vertex in enumerate(loop[0][:-1])]
# closing edges of circular loops
average_edge_length += [(bm.verts[loop[0][-1]].co - \
bm.verts[loop[0][0]].co).length for loop in loops if loop[1]]
# average lengths
average_edge_length = sum(average_edge_length) / len(average_edge_length)
average_bridge_length = sum([(bm.verts[v1].co - \
bm.verts[v2].co).length for v1, v2 in lines]) / len(lines)
segments = max(1, round(average_bridge_length / average_edge_length))
return(segments)
# return dictionary with vertex index as key, and the normal vector as value
def bridge_calculate_virtual_vertex_normals(bm, lines, loops, edge_faces,
edgekey_to_edge):
if not edge_faces: # interpolation isn't set to cubic
return False
# pity reduce() isn't one of the basic functions in python anymore
def average_vector_dictionary(dic):
for key, vectors in dic.items():
#if type(vectors) == type([]) and len(vectors) > 1:
if len(vectors) > 1:
average = mathutils.Vector()
for vector in vectors:
average += vector
average /= len(vectors)
dic[key] = [average]
return dic
# get all edges of the loop
edges = [[edgekey_to_edge[tuple(sorted([loops[j][0][i],
loops[j][0][i+1]]))] for i in range(len(loops[j][0])-1)] for \
j in [0,1]]
edges = edges[0] + edges[1]
for j in [0, 1]:
if loops[j][1]: # circular
edges.append(edgekey_to_edge[tuple(sorted([loops[j][0][0],
loops[j][0][-1]]))])
"""
calculation based on face topology (assign edge-normals to vertices)
edge_normal = face_normal x edge_vector
vertex_normal = average(edge_normals)
"""
vertex_normals = dict([(vertex, []) for vertex in loops[0][0]+loops[1][0]])
for edge in edges:
faces = edge_faces[edgekey(edge)] # valid faces connected to edge
if faces:
# get edge coordinates
v1, v2 = [bm.verts[edgekey(edge)[i]].co for i in [0,1]]
edge_vector = v1 - v2
if edge_vector.length < 1e-4:
# zero-length edge, vertices at same location
continue
edge_center = (v1 + v2) / 2
# average face coordinates, if connected to more than 1 valid face
if len(faces) > 1:
face_normal = mathutils.Vector()
face_center = mathutils.Vector()
for face in faces:
face_normal += face.normal
face_center += face.calc_center_median()
face_normal /= len(faces)
face_center /= len(faces)
else:
face_normal = faces[0].normal
face_center = faces[0].calc_center_median()
if face_normal.length < 1e-4:
# faces with a surface of 0 have no face normal
continue
# calculate virtual edge normal
edge_normal = edge_vector.cross(face_normal)
edge_normal.length = 0.01
if (face_center - (edge_center + edge_normal)).length > \
(face_center - (edge_center - edge_normal)).length:
# make normal face the correct way
edge_normal.negate()
edge_normal.normalize()
# add virtual edge normal as entry for both vertices it connects
for vertex in edgekey(edge):
vertex_normals[vertex].append(edge_normal)
"""
calculation based on connection with other loop (vertex focused method)
- used for vertices that aren't connected to any valid faces
plane_normal = edge_vector x connection_vector
vertex_normal = plane_normal x edge_vector
"""
vertices = [vertex for vertex, normal in vertex_normals.items() if not \
normal]
if vertices:
# edge vectors connected to vertices
edge_vectors = dict([[vertex, []] for vertex in vertices])
for edge in edges:
for v in edgekey(edge):
if v in edge_vectors:
edge_vector = bm.verts[edgekey(edge)[0]].co - \
bm.verts[edgekey(edge)[1]].co
if edge_vector.length < 1e-4:
# zero-length edge, vertices at same location
continue
edge_vectors[v].append(edge_vector)
# connection vectors between vertices of both loops
connection_vectors = dict([[vertex, []] for vertex in vertices])
connections = dict([[vertex, []] for vertex in vertices])
for v1, v2 in lines:
if v1 in connection_vectors or v2 in connection_vectors:
new_vector = bm.verts[v1].co - bm.verts[v2].co
if new_vector.length < 1e-4:
# zero-length connection vector,
# vertices in different loops at same location
continue
if v1 in connection_vectors:
connection_vectors[v1].append(new_vector)
connections[v1].append(v2)
if v2 in connection_vectors:
connection_vectors[v2].append(new_vector)
connections[v2].append(v1)
connection_vectors = average_vector_dictionary(connection_vectors)
connection_vectors = dict([[vertex, vector[0]] if vector else \
[vertex, []] for vertex, vector in connection_vectors.items()])
for vertex, values in edge_vectors.items():
# vertex normal doesn't matter, just assign a random vector to it
if not connection_vectors[vertex]:
vertex_normals[vertex] = [mathutils.Vector((1, 0, 0))]
continue
# calculate to what location the vertex is connected,
# used to determine what way to flip the normal
connected_center = mathutils.Vector()
for v in connections[vertex]:
connected_center += bm.verts[v].co
if len(connections[vertex]) > 1:
connected_center /= len(connections[vertex])
if len(connections[vertex]) == 0:
# shouldn't be possible, but better safe than sorry
vertex_normals[vertex] = [mathutils.Vector((1, 0, 0))]
continue
# can't do proper calculations, because of zero-length vector
if not values:
if (connected_center - (bm.verts[vertex].co + \
connection_vectors[vertex])).length < (connected_center - \
(bm.verts[vertex].co - connection_vectors[vertex])).\
length:
connection_vectors[vertex].negate()
vertex_normals[vertex] = [connection_vectors[vertex].\
normalized()]
continue
# calculate vertex normals using edge-vectors,
# connection-vectors and the derived plane normal
for edge_vector in values:
plane_normal = edge_vector.cross(connection_vectors[vertex])
vertex_normal = edge_vector.cross(plane_normal)
vertex_normal.length = 0.1
if (connected_center - (bm.verts[vertex].co + \
vertex_normal)).length < (connected_center - \
(bm.verts[vertex].co - vertex_normal)).length:
# make normal face the correct way
vertex_normal.negate()
vertex_normal.normalize()
vertex_normals[vertex].append(vertex_normal)
# average virtual vertex normals, based on all edges it's connected to
vertex_normals = average_vector_dictionary(vertex_normals)
vertex_normals = dict([[vertex, vector[0]] for vertex, vector in \
vertex_normals.items()])
return(vertex_normals)
# add vertices to mesh
def bridge_create_vertices(bm, vertices):
for i in range(len(vertices)):
bm.verts.new(vertices[i])
bm.verts.ensure_lookup_table()
# add faces to mesh
def bridge_create_faces(object, bm, faces, twist):
# have the normal point the correct way
if twist < 0:
[face.reverse() for face in faces]
faces = [face[2:]+face[:2] if face[0]==face[1] else face for \
face in faces]
# eekadoodle prevention
for i in range(len(faces)):
if not faces[i][-1]:
if faces[i][0] == faces[i][-1]:
faces[i] = [faces[i][1], faces[i][2], faces[i][3], faces[i][1]]
else:
faces[i] = [faces[i][-1]] + faces[i][:-1]
# result of converting from pre-bmesh period
if faces[i][-1] == faces[i][-2]:
faces[i] = faces[i][:-1]
new_faces = []
for i in range(len(faces)):
new_faces.append(bm.faces.new([bm.verts[v] for v in faces[i]]))
bm.normal_update()
object.data.update(calc_edges=True) # calc_edges prevents memory-corruption
bm.verts.ensure_lookup_table()
bm.edges.ensure_lookup_table()
bm.faces.ensure_lookup_table()
return(new_faces)
# calculate input loops
def bridge_get_input(bm):
# create list of internal edges, which should be skipped
eks_of_selected_faces = [item for sublist in [face_edgekeys(face) for \
face in bm.faces if face.select and not face.hide] for item in sublist]
edge_count = {}
for ek in eks_of_selected_faces:
if ek in edge_count:
edge_count[ek] += 1
else:
edge_count[ek] = 1
internal_edges = [ek for ek in edge_count if edge_count[ek] > 1]
# sort correct edges into loops
selected_edges = [edgekey(edge) for edge in bm.edges if edge.select \
and not edge.hide and edgekey(edge) not in internal_edges]
loops = get_connected_selections(selected_edges)
return(loops)
# return values needed by the bridge operator
def bridge_initialise(bm, interpolation):
if interpolation == 'cubic':
# dict with edge-key as key and list of connected valid faces as value
face_blacklist = [face.index for face in bm.faces if face.select or \
face.hide]
edge_faces = dict([[edgekey(edge), []] for edge in bm.edges if not \
edge.hide])
for face in bm.faces:
if face.index in face_blacklist:
continue
for key in face_edgekeys(face):
edge_faces[key].append(face)
# dictionary with the edge-key as key and edge as value
edgekey_to_edge = dict([[edgekey(edge), edge] for edge in \
bm.edges if edge.select and not edge.hide])
else:
edge_faces = False
edgekey_to_edge = False
# selected faces input
old_selected_faces = [face.index for face in bm.faces if face.select \
and not face.hide]
# find out if faces created by bridging should be smoothed
smooth = False
if bm.faces:
if sum([face.smooth for face in bm.faces])/len(bm.faces) \
>= 0.5:
smooth = True
return(edge_faces, edgekey_to_edge, old_selected_faces, smooth)
# return a string with the input method
def bridge_input_method(loft, loft_loop):
method = ""
if loft:
if loft_loop:
method = "Loft loop"
else:
method = "Loft no-loop"
else:
method = "Bridge"
return(method)
# match up loops in pairs, used for multi-input bridging
def bridge_match_loops(bm, loops):
# calculate average loop normals and centers
normals = []
centers = []
for vertices, circular in loops:
normal = mathutils.Vector()
center = mathutils.Vector()
for vertex in vertices:
normal += bm.verts[vertex].normal
center += bm.verts[vertex].co
normals.append(normal / len(vertices) / 10)
centers.append(center / len(vertices))
# possible matches if loop normals are faced towards the center
# of the other loop
matches = dict([[i, []] for i in range(len(loops))])
matches_amount = 0
for i in range(len(loops) + 1):
for j in range(i+1, len(loops)):
if (centers[i] - centers[j]).length > (centers[i] - (centers[j] \
+ normals[j])).length and (centers[j] - centers[i]).length > \
(centers[j] - (centers[i] + normals[i])).length:
matches_amount += 1
matches[i].append([(centers[i] - centers[j]).length, i, j])
matches[j].append([(centers[i] - centers[j]).length, j, i])
# if no loops face each other, just make matches between all the loops
if matches_amount == 0:
for i in range(len(loops) + 1):
for j in range(i+1, len(loops)):
matches[i].append([(centers[i] - centers[j]).length, i, j])
matches[j].append([(centers[i] - centers[j]).length, j, i])
for key, value in matches.items():
value.sort()
# matches based on distance between centers and number of vertices in loops
new_order = []
for loop_index in range(len(loops)):
if loop_index in new_order:
continue
loop_matches = matches[loop_index]
if not loop_matches:
continue
shortest_distance = loop_matches[0][0]
shortest_distance *= 1.1
loop_matches = [[abs(len(loops[loop_index][0]) - \
len(loops[loop[2]][0])), loop[0], loop[1], loop[2]] for loop in \
loop_matches if loop[0] < shortest_distance]
loop_matches.sort()
for match in loop_matches:
if match[3] not in new_order:
new_order += [loop_index, match[3]]
break
# reorder loops based on matches
if len(new_order) >= 2:
loops = [loops[i] for i in new_order]
return(loops)
# remove old_selected_faces
def bridge_remove_internal_faces(bm, old_selected_faces):
# collect bmesh faces and internal bmesh edges
remove_faces = [bm.faces[face] for face in old_selected_faces]
edges = collections.Counter([edge.index for face in remove_faces for \
edge in face.edges])
remove_edges = [bm.edges[edge] for edge in edges if edges[edge] > 1]
# remove internal faces and edges
for face in remove_faces:
bm.faces.remove(face)
for edge in remove_edges:
bm.edges.remove(edge)
bm.faces.ensure_lookup_table()
bm.edges.ensure_lookup_table()
bm.verts.ensure_lookup_table()
# update list of internal faces that are flagged for removal
def bridge_save_unused_faces(bm, old_selected_faces, loops):
# key: vertex index, value: lists of selected faces using it
vertex_to_face = dict([[i, []] for i in range(len(bm.verts))])
[[vertex_to_face[vertex.index].append(face) for vertex in \
bm.faces[face].verts] for face in old_selected_faces]
# group selected faces that are connected
groups = []
grouped_faces = []
for face in old_selected_faces:
if face in grouped_faces:
continue
grouped_faces.append(face)
group = [face]
new_faces = [face]
while new_faces:
grow_face = new_faces[0]
for vertex in bm.faces[grow_face].verts:
vertex_face_group = [face for face in vertex_to_face[\
vertex.index] if face not in grouped_faces]
new_faces += vertex_face_group
grouped_faces += vertex_face_group
group += vertex_face_group
new_faces.pop(0)
groups.append(group)
# key: vertex index, value: True/False (is it in a loop that is used)
used_vertices = dict([[i, 0] for i in range(len(bm.verts))])
for loop in loops:
for vertex in loop[0]:
used_vertices[vertex] = True
# check if group is bridged, if not remove faces from internal faces list
for group in groups:
used = False
for face in group:
if used:
break
for vertex in bm.faces[face].verts:
if used_vertices[vertex.index]:
used = True
break
if not used:
for face in group:
old_selected_faces.remove(face)
# add the newly created faces to the selection
def bridge_select_new_faces(new_faces, smooth):
for face in new_faces:
face.select_set(True)
face.smooth = smooth
# sort loops, so they are connected in the correct order when lofting
def bridge_sort_loops(bm, loops, loft_loop):
# simplify loops to single points, and prepare for pathfinding
x, y, z = [[sum([bm.verts[i].co[j] for i in loop[0]]) / \
len(loop[0]) for loop in loops] for j in range(3)]
nodes = [mathutils.Vector((x[i], y[i], z[i])) for i in range(len(loops))]
active_node = 0
open = [i for i in range(1, len(loops))]
path = [[0,0]]
# connect node to path, that is shortest to active_node
while len(open) > 0:
distances = [(nodes[active_node] - nodes[i]).length for i in open]
active_node = open[distances.index(min(distances))]
open.remove(active_node)
path.append([active_node, min(distances)])
# check if we didn't start in the middle of the path
for i in range(2, len(path)):
if (nodes[path[i][0]]-nodes[0]).length < path[i][1]:
temp = path[:i]
path.reverse()
path = path[:-i] + temp
break
# reorder loops
loops = [loops[i[0]] for i in path]
# if requested, duplicate first loop at last position, so loft can loop
if loft_loop:
loops = loops + [loops[0]]
return(loops)
# remapping old indices to new position in list
def bridge_update_old_selection(bm, old_selected_faces):
#old_indices = old_selected_faces[:]
#old_selected_faces = []
#for i, face in enumerate(bm.faces):
# if face.index in old_indices:
# old_selected_faces.append(i)
old_selected_faces = [i for i, face in enumerate(bm.faces) if face.index \
in old_selected_faces]
return(old_selected_faces)
##########################################
####### Circle functions #################
##########################################
# convert 3d coordinates to 2d coordinates on plane
def circle_3d_to_2d(bm_mod, loop, com, normal):
# project vertices onto the plane
verts = [bm_mod.verts[v] for v in loop[0]]
verts_projected = [[v.co - (v.co - com).dot(normal) * normal, v.index]
for v in verts]
# calculate two vectors (p and q) along the plane
m = mathutils.Vector((normal[0] + 1.0, normal[1], normal[2]))
p = m - (m.dot(normal) * normal)
if p.dot(p) < 1e-6:
m = mathutils.Vector((normal[0], normal[1] + 1.0, normal[2]))
p = m - (m.dot(normal) * normal)
q = p.cross(normal)
# change to 2d coordinates using perpendicular projection
locs_2d = []
for loc, vert in verts_projected:
vloc = loc - com
x = p.dot(vloc) / p.dot(p)
y = q.dot(vloc) / q.dot(q)
locs_2d.append([x, y, vert])
return(locs_2d, p, q)
# calculate a best-fit circle to the 2d locations on the plane
def circle_calculate_best_fit(locs_2d):
# initial guess
x0 = 0.0
y0 = 0.0
r = 1.0
# calculate center and radius (non-linear least squares solution)
for iter in range(500):
jmat = []
k = []
for v in locs_2d:
d = (v[0]**2-2.0*x0*v[0]+v[1]**2-2.0*y0*v[1]+x0**2+y0**2)**0.5
jmat.append([(x0-v[0])/d, (y0-v[1])/d, -1.0])
k.append(-(((v[0]-x0)**2+(v[1]-y0)**2)**0.5-r))
jmat2 = mathutils.Matrix(((0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
(0.0, 0.0, 0.0),
))
k2 = mathutils.Vector((0.0, 0.0, 0.0))
for i in range(len(jmat)):
k2 += mathutils.Vector(jmat[i])*k[i]
jmat2[0][0] += jmat[i][0]**2
jmat2[1][0] += jmat[i][0]*jmat[i][1]
jmat2[2][0] += jmat[i][0]*jmat[i][2]
jmat2[1][1] += jmat[i][1]**2
jmat2[2][1] += jmat[i][1]*jmat[i][2]
jmat2[2][2] += jmat[i][2]**2
jmat2[0][1] = jmat2[1][0]
jmat2[0][2] = jmat2[2][0]
jmat2[1][2] = jmat2[2][1]
try:
jmat2.invert()
except:
pass
dx0, dy0, dr = jmat2 * k2
x0 += dx0
y0 += dy0
r += dr
# stop iterating if we're close enough to optimal solution
if abs(dx0)<1e-6 and abs(dy0)<1e-6 and abs(dr)<1e-6:
break
# return center of circle and radius
return(x0, y0, r)
# calculate circle so no vertices have to be moved away from the center
def circle_calculate_min_fit(locs_2d):
# center of circle
x0 = (min([i[0] for i in locs_2d])+max([i[0] for i in locs_2d]))/2.0
y0 = (min([i[1] for i in locs_2d])+max([i[1] for i in locs_2d]))/2.0
center = mathutils.Vector([x0, y0])
# radius of circle
r = min([(mathutils.Vector([i[0], i[1]])-center).length for i in locs_2d])
# return center of circle and radius
return(x0, y0, r)
# calculate the new locations of the vertices that need to be moved
def circle_calculate_verts(flatten, bm_mod, locs_2d, com, p, q, normal):
# changing 2d coordinates back to 3d coordinates
locs_3d = []
for loc in locs_2d:
locs_3d.append([loc[2], loc[0]*p + loc[1]*q + com])
if flatten: # flat circle
return(locs_3d)
else: # project the locations on the existing mesh
vert_edges = dict_vert_edges(bm_mod)
vert_faces = dict_vert_faces(bm_mod)
faces = [f for f in bm_mod.faces if not f.hide]
rays = [normal, -normal]
new_locs = []
for loc in locs_3d:
projection = False
if bm_mod.verts[loc[0]].co == loc[1]: # vertex hasn't moved
projection = loc[1]
else:
dif = normal.angle(loc[1]-bm_mod.verts[loc[0]].co)
if -1e-6 < dif < 1e-6 or math.pi-1e-6 < dif < math.pi+1e-6:
# original location is already along projection normal
projection = bm_mod.verts[loc[0]].co
else:
# quick search through adjacent faces
for face in vert_faces[loc[0]]:
verts = [v.co for v in bm_mod.faces[face].verts]
if len(verts) == 3: # triangle
v1, v2, v3 = verts
v4 = False
else: # assume quad
v1, v2, v3, v4 = verts[:4]
for ray in rays:
intersect = mathutils.geometry.\
intersect_ray_tri(v1, v2, v3, ray, loc[1])
if intersect:
projection = intersect
break
elif v4:
intersect = mathutils.geometry.\
intersect_ray_tri(v1, v3, v4, ray, loc[1])
if intersect:
projection = intersect
break
if projection:
break
if not projection:
# check if projection is on adjacent edges
for edgekey in vert_edges[loc[0]]:
line1 = bm_mod.verts[edgekey[0]].co
line2 = bm_mod.verts[edgekey[1]].co
intersect, dist = mathutils.geometry.intersect_point_line(\
loc[1], line1, line2)
if 1e-6 < dist < 1 - 1e-6:
projection = intersect
break
if not projection:
# full search through the entire mesh
hits = []
for face in faces:
verts = [v.co for v in face.verts]
if len(verts) == 3: # triangle
v1, v2, v3 = verts
v4 = False
else: # assume quad
v1, v2, v3, v4 = verts[:4]
for ray in rays:
intersect = mathutils.geometry.intersect_ray_tri(\
v1, v2, v3, ray, loc[1])
if intersect:
hits.append([(loc[1] - intersect).length,
intersect])
break
elif v4:
intersect = mathutils.geometry.intersect_ray_tri(\
v1, v3, v4, ray, loc[1])
if intersect:
hits.append([(loc[1] - intersect).length,
intersect])
break
if len(hits) >= 1:
# if more than 1 hit with mesh, closest hit is new loc
hits.sort()
projection = hits[0][1]
if not projection:
# nothing to project on, remain at flat location
projection = loc[1]
new_locs.append([loc[0], projection])
# return new positions of projected circle
return(new_locs)
# check loops and only return valid ones
def circle_check_loops(single_loops, loops, mapping, bm_mod):
valid_single_loops = {}
valid_loops = []
for i, [loop, circular] in enumerate(loops):
# loop needs to have at least 3 vertices
if len(loop) < 3:
continue
# loop needs at least 1 vertex in the original, non-mirrored mesh
if mapping:
all_virtual = True
for vert in loop:
if mapping[vert] > -1:
all_virtual = False
break
if all_virtual:
continue
# loop has to be non-collinear
collinear = True
loc0 = mathutils.Vector(bm_mod.verts[loop[0]].co[:])
loc1 = mathutils.Vector(bm_mod.verts[loop[1]].co[:])
for v in loop[2:]:
locn = mathutils.Vector(bm_mod.verts[v].co[:])
if loc0 == loc1 or loc1 == locn:
loc0 = loc1
loc1 = locn
continue
d1 = loc1-loc0
d2 = locn-loc1
if -1e-6 < d1.angle(d2, 0) < 1e-6:
loc0 = loc1
loc1 = locn
continue
collinear = False
break
if collinear:
continue
# passed all tests, loop is valid
valid_loops.append([loop, circular])
valid_single_loops[len(valid_loops)-1] = single_loops[i]
return(valid_single_loops, valid_loops)
# calculate the location of single input vertices that need to be flattened
def circle_flatten_singles(bm_mod, com, p, q, normal, single_loop):
new_locs = []
for vert in single_loop:
loc = mathutils.Vector(bm_mod.verts[vert].co[:])
new_locs.append([vert, loc - (loc-com).dot(normal)*normal])
return(new_locs)
# calculate input loops
def circle_get_input(object, bm, scene):
# get mesh with modifiers applied
derived, bm_mod = get_derived_bmesh(object, bm, scene)
# create list of edge-keys based on selection state
faces = False
for face in bm.faces:
if face.select and not face.hide:
faces = True
break
if faces:
# get selected, non-hidden , non-internal edge-keys
eks_selected = [key for keys in [face_edgekeys(face) for face in \
bm_mod.faces if face.select and not face.hide] for key in keys]
edge_count = {}
for ek in eks_selected:
if ek in edge_count:
edge_count[ek] += 1
else:
edge_count[ek] = 1
edge_keys = [edgekey(edge) for edge in bm_mod.edges if edge.select \
and not edge.hide and edge_count.get(edgekey(edge), 1)==1]
else:
# no faces, so no internal edges either
edge_keys = [edgekey(edge) for edge in bm_mod.edges if edge.select \
and not edge.hide]
# add edge-keys around single vertices
verts_connected = dict([[vert, 1] for edge in [edge for edge in \
bm_mod.edges if edge.select and not edge.hide] for vert in \
edgekey(edge)])
single_vertices = [vert.index for vert in bm_mod.verts if \
vert.select and not vert.hide and not \
verts_connected.get(vert.index, False)]
if single_vertices and len(bm.faces)>0:
vert_to_single = dict([[v.index, []] for v in bm_mod.verts \
if not v.hide])
for face in [face for face in bm_mod.faces if not face.select \
and not face.hide]:
for vert in face.verts:
vert = vert.index
if vert in single_vertices:
for ek in face_edgekeys(face):
if not vert in ek:
edge_keys.append(ek)
if vert not in vert_to_single[ek[0]]:
vert_to_single[ek[0]].append(vert)
if vert not in vert_to_single[ek[1]]:
vert_to_single[ek[1]].append(vert)
break
# sort edge-keys into loops
loops = get_connected_selections(edge_keys)
# find out to which loops the single vertices belong
single_loops = dict([[i, []] for i in range(len(loops))])
if single_vertices and len(bm.faces)>0:
for i, [loop, circular] in enumerate(loops):
for vert in loop:
if vert_to_single[vert]:
for single in vert_to_single[vert]:
if single not in single_loops[i]:
single_loops[i].append(single)
return(derived, bm_mod, single_vertices, single_loops, loops)
# recalculate positions based on the influence of the circle shape
def circle_influence_locs(locs_2d, new_locs_2d, influence):
for i in range(len(locs_2d)):
oldx, oldy, j = locs_2d[i]
newx, newy, k = new_locs_2d[i]
altx = newx*(influence/100)+ oldx*((100-influence)/100)
alty = newy*(influence/100)+ oldy*((100-influence)/100)
locs_2d[i] = [altx, alty, j]
return(locs_2d)
# project 2d locations on circle, respecting distance relations between verts
def circle_project_non_regular(locs_2d, x0, y0, r):
for i in range(len(locs_2d)):
x, y, j = locs_2d[i]
loc = mathutils.Vector([x-x0, y-y0])
loc.length = r
locs_2d[i] = [loc[0], loc[1], j]
return(locs_2d)
# project 2d locations on circle, with equal distance between all vertices
def circle_project_regular(locs_2d, x0, y0, r):
# find offset angle and circling direction
x, y, i = locs_2d[0]
loc = mathutils.Vector([x-x0, y-y0])
loc.length = r
offset_angle = loc.angle(mathutils.Vector([1.0, 0.0]), 0.0)
loca = mathutils.Vector([x-x0, y-y0, 0.0])
if loc[1] < -1e-6:
offset_angle *= -1
x, y, j = locs_2d[1]
locb = mathutils.Vector([x-x0, y-y0, 0.0])
if loca.cross(locb)[2] >= 0:
ccw = 1
else:
ccw = -1
# distribute vertices along the circle
for i in range(len(locs_2d)):
t = offset_angle + ccw * (i / len(locs_2d) * 2 * math.pi)
x = math.cos(t) * r
y = math.sin(t) * r
locs_2d[i] = [x, y, locs_2d[i][2]]
return(locs_2d)
# shift loop, so the first vertex is closest to the center
def circle_shift_loop(bm_mod, loop, com):
verts, circular = loop
distances = [[(bm_mod.verts[vert].co - com).length, i] \
for i, vert in enumerate(verts)]
distances.sort()
shift = distances[0][1]
loop = [verts[shift:] + verts[:shift], circular]
return(loop)
##########################################
####### Curve functions ##################
##########################################
# create lists with knots and points, all correctly sorted
def curve_calculate_knots(loop, verts_selected):
knots = [v for v in loop[0] if v in verts_selected]
points = loop[0][:]
# circular loop, potential for weird splines
if loop[1]:
offset = int(len(loop[0]) / 4)
kpos = []
for k in knots:
kpos.append(loop[0].index(k))
kdif = []
for i in range(len(kpos) - 1):
kdif.append(kpos[i+1] - kpos[i])
kdif.append(len(loop[0]) - kpos[-1] + kpos[0])
kadd = []
for k in kdif:
if k > 2 * offset:
kadd.append([kdif.index(k), True])
# next 2 lines are optional, they insert
# an extra control point in small gaps
#elif k > offset:
# kadd.append([kdif.index(k), False])
kins = []
krot = False
for k in kadd: # extra knots to be added
if k[1]: # big gap (break circular spline)
kpos = loop[0].index(knots[k[0]]) + offset
if kpos > len(loop[0]) - 1:
kpos -= len(loop[0])
kins.append([knots[k[0]], loop[0][kpos]])
kpos2 = k[0] + 1
if kpos2 > len(knots)-1:
kpos2 -= len(knots)
kpos2 = loop[0].index(knots[kpos2]) - offset
if kpos2 < 0:
kpos2 += len(loop[0])
kins.append([loop[0][kpos], loop[0][kpos2]])
krot = loop[0][kpos2]
else: # small gap (keep circular spline)
k1 = loop[0].index(knots[k[0]])
k2 = k[0] + 1
if k2 > len(knots)-1:
k2 -= len(knots)
k2 = loop[0].index(knots[k2])
if k2 < k1:
dif = len(loop[0]) - 1 - k1 + k2
else:
dif = k2 - k1
kn = k1 + int(dif/2)
if kn > len(loop[0]) - 1:
kn -= len(loop[0])
kins.append([loop[0][k1], loop[0][kn]])
for j in kins: # insert new knots
knots.insert(knots.index(j[0]) + 1, j[1])
if not krot: # circular loop
knots.append(knots[0])
points = loop[0][loop[0].index(knots[0]):]
points += loop[0][0:loop[0].index(knots[0]) + 1]
else: # non-circular loop (broken by script)
krot = knots.index(krot)
knots = knots[krot:] + knots[0:krot]
if loop[0].index(knots[0]) > loop[0].index(knots[-1]):
points = loop[0][loop[0].index(knots[0]):]
points += loop[0][0:loop[0].index(knots[-1])+1]
else:
points = loop[0][loop[0].index(knots[0]):\
loop[0].index(knots[-1]) + 1]
# non-circular loop, add first and last point as knots
else:
if loop[0][0] not in knots:
knots.insert(0, loop[0][0])
if loop[0][-1] not in knots:
knots.append(loop[0][-1])
return(knots, points)
# calculate relative positions compared to first knot
def curve_calculate_t(bm_mod, knots, points, pknots, regular, circular):
tpoints = []
loc_prev = False
len_total = 0
for p in points:
if p in knots:
loc = pknots[knots.index(p)] # use projected knot location
else:
loc = mathutils.Vector(bm_mod.verts[p].co[:])
if not loc_prev:
loc_prev = loc
len_total += (loc-loc_prev).length
tpoints.append(len_total)
loc_prev = loc
tknots = []
for p in points:
if p in knots:
tknots.append(tpoints[points.index(p)])
if circular:
tknots[-1] = tpoints[-1]
# regular option
if regular:
tpoints_average = tpoints[-1] / (len(tpoints) - 1)
for i in range(1, len(tpoints) - 1):
tpoints[i] = i * tpoints_average
for i in range(len(knots)):
tknots[i] = tpoints[points.index(knots[i])]
if circular:
tknots[-1] = tpoints[-1]
return(tknots, tpoints)
# change the location of non-selected points to their place on the spline
def curve_calculate_vertices(bm_mod, knots, tknots, points, tpoints, splines,
interpolation, restriction):
newlocs = {}
move = []
for p in points:
if p in knots:
continue
m = tpoints[points.index(p)]
if m in tknots:
n = tknots.index(m)
else:
t = tknots[:]
t.append(m)
t.sort()
n = t.index(m) - 1
if n > len(splines) - 1:
n = len(splines) - 1
elif n < 0:
n = 0
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[n][0]
x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
ay, by, cy, dy, ty = splines[n][1]
y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
az, bz, cz, dz, tz = splines[n][2]
z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
newloc = mathutils.Vector([x,y,z])
else: # interpolation == 'linear'
a, d, t, u = splines[n]
newloc = ((m-t)/u)*d + a
if restriction != 'none': # vertex movement is restricted
newlocs[p] = newloc
else: # set the vertex to its new location
move.append([p, newloc])
if restriction != 'none': # vertex movement is restricted
for p in points:
if p in newlocs:
newloc = newlocs[p]
else:
move.append([p, bm_mod.verts[p].co])
continue
oldloc = bm_mod.verts[p].co
normal = bm_mod.verts[p].normal
dloc = newloc - oldloc
if dloc.length < 1e-6:
move.append([p, newloc])
elif restriction == 'extrude': # only extrusions
if dloc.angle(normal, 0) < 0.5 * math.pi + 1e-6:
move.append([p, newloc])
else: # restriction == 'indent' only indentations
if dloc.angle(normal) > 0.5 * math.pi - 1e-6:
move.append([p, newloc])
return(move)
# trim loops to part between first and last selected vertices (including)
def curve_cut_boundaries(bm_mod, loops):
cut_loops = []
for loop, circular in loops:
if circular:
# don't cut
cut_loops.append([loop, circular])
continue
selected = [bm_mod.verts[v].select for v in loop]
first = selected.index(True)
selected.reverse()
last = -selected.index(True)
if last == 0:
cut_loops.append([loop[first:], circular])
else:
cut_loops.append([loop[first:last], circular])
return(cut_loops)
# calculate input loops
def curve_get_input(object, bm, boundaries, scene):
# get mesh with modifiers applied
derived, bm_mod = get_derived_bmesh(object, bm, scene)
# vertices that still need a loop to run through it
verts_unsorted = [v.index for v in bm_mod.verts if \
v.select and not v.hide]
# necessary dictionaries
vert_edges = dict_vert_edges(bm_mod)
edge_faces = dict_edge_faces(bm_mod)
correct_loops = []
# find loops through each selected vertex
while len(verts_unsorted) > 0:
loops = curve_vertex_loops(bm_mod, verts_unsorted[0], vert_edges,
edge_faces)
verts_unsorted.pop(0)
# check if loop is fully selected
search_perpendicular = False
i = -1
for loop, circular in loops:
i += 1
selected = [v for v in loop if bm_mod.verts[v].select]
if len(selected) < 2:
# only one selected vertex on loop, don't use
loops.pop(i)
continue
elif len(selected) == len(loop):
search_perpendicular = loop
break
# entire loop is selected, find perpendicular loops
if search_perpendicular:
for vert in loop:
if vert in verts_unsorted:
verts_unsorted.remove(vert)
perp_loops = curve_perpendicular_loops(bm_mod, loop,
vert_edges, edge_faces)
for perp_loop in perp_loops:
correct_loops.append(perp_loop)
# normal input
else:
for loop, circular in loops:
correct_loops.append([loop, circular])
# boundaries option
if boundaries:
correct_loops = curve_cut_boundaries(bm_mod, correct_loops)
return(derived, bm_mod, correct_loops)
# return all loops that are perpendicular to the given one
def curve_perpendicular_loops(bm_mod, start_loop, vert_edges, edge_faces):
# find perpendicular loops
perp_loops = []
for start_vert in start_loop:
loops = curve_vertex_loops(bm_mod, start_vert, vert_edges,
edge_faces)
for loop, circular in loops:
selected = [v for v in loop if bm_mod.verts[v].select]
if len(selected) == len(loop):
continue
else:
perp_loops.append([loop, circular, loop.index(start_vert)])
# trim loops to same lengths
shortest = [[len(loop[0]), i] for i, loop in enumerate(perp_loops)\
if not loop[1]]
if not shortest:
# all loops are circular, not trimming
return([[loop[0], loop[1]] for loop in perp_loops])
else:
shortest = min(shortest)
shortest_start = perp_loops[shortest[1]][2]
before_start = shortest_start
after_start = shortest[0] - shortest_start - 1
bigger_before = before_start > after_start
trimmed_loops = []
for loop in perp_loops:
# have the loop face the same direction as the shortest one
if bigger_before:
if loop[2] < len(loop[0]) / 2:
loop[0].reverse()
loop[2] = len(loop[0]) - loop[2] - 1
else:
if loop[2] > len(loop[0]) / 2:
loop[0].reverse()
loop[2] = len(loop[0]) - loop[2] - 1
# circular loops can shift, to prevent wrong trimming
if loop[1]:
shift = shortest_start - loop[2]
if loop[2] + shift > 0 and loop[2] + shift < len(loop[0]):
loop[0] = loop[0][-shift:] + loop[0][:-shift]
loop[2] += shift
if loop[2] < 0:
loop[2] += len(loop[0])
elif loop[2] > len(loop[0]) -1:
loop[2] -= len(loop[0])
# trim
start = max(0, loop[2] - before_start)
end = min(len(loop[0]), loop[2] + after_start + 1)
trimmed_loops.append([loop[0][start:end], False])
return(trimmed_loops)
# project knots on non-selected geometry
def curve_project_knots(bm_mod, verts_selected, knots, points, circular):
# function to project vertex on edge
def project(v1, v2, v3):
# v1 and v2 are part of a line
# v3 is projected onto it
v2 -= v1
v3 -= v1
p = v3.project(v2)
return(p + v1)
if circular: # project all knots
start = 0
end = len(knots)
pknots = []
else: # first and last knot shouldn't be projected
start = 1
end = -1
pknots = [mathutils.Vector(bm_mod.verts[knots[0]].co[:])]
for knot in knots[start:end]:
if knot in verts_selected:
knot_left = knot_right = False
for i in range(points.index(knot)-1, -1*len(points), -1):
if points[i] not in knots:
knot_left = points[i]
break
for i in range(points.index(knot)+1, 2*len(points)):
if i > len(points) - 1:
i -= len(points)
if points[i] not in knots:
knot_right = points[i]
break
if knot_left and knot_right and knot_left != knot_right:
knot_left = mathutils.Vector(\
bm_mod.verts[knot_left].co[:])
knot_right = mathutils.Vector(\
bm_mod.verts[knot_right].co[:])
knot = mathutils.Vector(bm_mod.verts[knot].co[:])
pknots.append(project(knot_left, knot_right, knot))
else:
pknots.append(mathutils.Vector(bm_mod.verts[knot].co[:]))
else: # knot isn't selected, so shouldn't be changed
pknots.append(mathutils.Vector(bm_mod.verts[knot].co[:]))
if not circular:
pknots.append(mathutils.Vector(bm_mod.verts[knots[-1]].co[:]))
return(pknots)
# find all loops through a given vertex
def curve_vertex_loops(bm_mod, start_vert, vert_edges, edge_faces):
edges_used = []
loops = []
for edge in vert_edges[start_vert]:
if edge in edges_used:
continue
loop = []
circular = False
for vert in edge:
active_faces = edge_faces[edge]
new_vert = vert
growing = True
while growing:
growing = False
new_edges = vert_edges[new_vert]
loop.append(new_vert)
if len(loop) > 1:
edges_used.append(tuple(sorted([loop[-1], loop[-2]])))
if len(new_edges) < 3 or len(new_edges) > 4:
# pole
break
else:
# find next edge
for new_edge in new_edges:
if new_edge in edges_used:
continue
eliminate = False
for new_face in edge_faces[new_edge]:
if new_face in active_faces:
eliminate = True
break
if eliminate:
continue
# found correct new edge
active_faces = edge_faces[new_edge]
v1, v2 = new_edge
if v1 != new_vert:
new_vert = v1
else:
new_vert = v2
if new_vert == loop[0]:
circular = True
else:
growing = True
break
if circular:
break
loop.reverse()
loops.append([loop, circular])
return(loops)
##########################################
####### Flatten functions ################
##########################################
# sort input into loops
def flatten_get_input(bm):
vert_verts = dict_vert_verts([edgekey(edge) for edge in bm.edges \
if edge.select and not edge.hide])
verts = [v.index for v in bm.verts if v.select and not v.hide]
# no connected verts, consider all selected verts as a single input
if not vert_verts:
return([[verts, False]])
loops = []
while len(verts) > 0:
# start of loop
loop = [verts[0]]
verts.pop(0)
if loop[-1] in vert_verts:
to_grow = vert_verts[loop[-1]]
else:
to_grow = []
# grow loop
while len(to_grow) > 0:
new_vert = to_grow[0]
to_grow.pop(0)
if new_vert in loop:
continue
loop.append(new_vert)
verts.remove(new_vert)
to_grow += vert_verts[new_vert]
# add loop to loops
loops.append([loop, False])
return(loops)
# calculate position of vertex projections on plane
def flatten_project(bm, loop, com, normal):
verts = [bm.verts[v] for v in loop[0]]
verts_projected = [[v.index, mathutils.Vector(v.co[:]) - \
(mathutils.Vector(v.co[:])-com).dot(normal)*normal] for v in verts]
return(verts_projected)
##########################################
####### Gstretch functions ###############
##########################################
# fake stroke class, used to create custom strokes if no GP data is found
class gstretch_fake_stroke():
def __init__(self, points):
self.points = [gstretch_fake_stroke_point(p) for p in points]
# fake stroke point class, used in fake strokes
class gstretch_fake_stroke_point():
def __init__(self, loc):
self.co = loc
# flips loops, if necessary, to obtain maximum alignment to stroke
def gstretch_align_pairs(ls_pairs, object, bm_mod, method):
# returns total distance between all verts in loop and corresponding stroke
def distance_loop_stroke(loop, stroke, object, bm_mod, method):
stroke_lengths_cache = False
loop_length = len(loop[0])
total_distance = 0
if method != 'regular':
relative_lengths = gstretch_relative_lengths(loop, bm_mod)
for i, v_index in enumerate(loop[0]):
if method == 'regular':
relative_distance = i / (loop_length - 1)
else:
relative_distance = relative_lengths[i]
loc1 = object.matrix_world * bm_mod.verts[v_index].co
loc2, stroke_lengths_cache = gstretch_eval_stroke(stroke,
relative_distance, stroke_lengths_cache)
total_distance += (loc2 - loc1).length
return(total_distance)
if ls_pairs:
for (loop, stroke) in ls_pairs:
total_dist = distance_loop_stroke(loop, stroke, object, bm_mod,
method)
loop[0].reverse()
total_dist_rev = distance_loop_stroke(loop, stroke, object, bm_mod,
method)
if total_dist_rev > total_dist:
loop[0].reverse()
return(ls_pairs)
# calculate vertex positions on stroke
def gstretch_calculate_verts(loop, stroke, object, bm_mod, method):
move = []
stroke_lengths_cache = False
loop_length = len(loop[0])
matrix_inverse = object.matrix_world.inverted()
# return intersection of line with stroke, or None
def intersect_line_stroke(vec1, vec2, stroke):
for i, p in enumerate(stroke.points[1:]):
intersections = mathutils.geometry.intersect_line_line(vec1, vec2,
p.co, stroke.points[i].co)
if intersections and \
(intersections[0] - intersections[1]).length < 1e-2:
x, dist = mathutils.geometry.intersect_point_line(
intersections[0], p.co, stroke.points[i].co)
if -1 < dist < 1:
return(intersections[0])
return(None)
if method == 'project':
projection_vectors = []
vert_edges = dict_vert_edges(bm_mod)
for v_index in loop[0]:
intersection = None
for ek in vert_edges[v_index]:
v1, v2 = ek
v1 = bm_mod.verts[v1]
v2 = bm_mod.verts[v2]
if v1.select + v2.select == 1 and not v1.hide and not v2.hide:
vec1 = object.matrix_world * v1.co
vec2 = object.matrix_world * v2.co
intersection = intersect_line_stroke(vec1, vec2, stroke)
if intersection:
break
if not intersection:
v = bm_mod.verts[v_index]
intersection = intersect_line_stroke(v.co, v.co + v.normal,
stroke)
if intersection:
move.append([v_index, matrix_inverse * intersection])
else:
if method == 'irregular':
relative_lengths = gstretch_relative_lengths(loop, bm_mod)
for i, v_index in enumerate(loop[0]):
if method == 'regular':
relative_distance = i / (loop_length - 1)
else: # method == 'irregular'
relative_distance = relative_lengths[i]
loc, stroke_lengths_cache = gstretch_eval_stroke(stroke,
relative_distance, stroke_lengths_cache)
loc = matrix_inverse * loc
move.append([v_index, loc])
return(move)
# create new vertices, based on GP strokes
def gstretch_create_verts(object, bm_mod, strokes, method, conversion,
conversion_distance, conversion_max, conversion_min, conversion_vertices):
move = []
stroke_verts = []
mat_world = object.matrix_world.inverted()
singles = gstretch_match_single_verts(bm_mod, strokes, mat_world)
for stroke in strokes:
stroke_verts.append([stroke, []])
min_end_point = 0
if conversion == 'vertices':
min_end_point = conversion_vertices
end_point = conversion_vertices
elif conversion == 'limit_vertices':
min_end_point = conversion_min
end_point = conversion_max
else:
end_point = len(stroke.points)
# creation of new vertices at fixed user-defined distances
if conversion == 'distance':
method = 'project'
prev_point = stroke.points[0]
stroke_verts[-1][1].append(bm_mod.verts.new(mat_world * \
prev_point.co))
distance = 0
limit = conversion_distance
for point in stroke.points:
new_distance = distance + (point.co - prev_point.co).length
iteration = 0
while new_distance > limit:
to_cover = limit - distance + (limit * iteration)
new_loc = prev_point.co + to_cover * \
(point.co - prev_point.co).normalized()
stroke_verts[-1][1].append(bm_mod.verts.new(mat_world * \
new_loc))
new_distance -= limit
iteration += 1
distance = new_distance
prev_point = point
# creation of new vertices for other methods
else:
# add vertices at stroke points
for point in stroke.points[:end_point]:
stroke_verts[-1][1].append(bm_mod.verts.new(\
mat_world * point.co))
# add more vertices, beyond the points that are available
if min_end_point > min(len(stroke.points), end_point):
for i in range(min_end_point -
(min(len(stroke.points), end_point))):
stroke_verts[-1][1].append(bm_mod.verts.new(\
mat_world * point.co))
# force even spreading of points, so they are placed on stroke
method = 'regular'
bm_mod.verts.ensure_lookup_table()
bm_mod.verts.index_update()
for stroke, verts_seq in stroke_verts:
if len(verts_seq) < 2:
continue
# spread vertices evenly over the stroke
if method == 'regular':
loop = [[vert.index for vert in verts_seq], False]
move += gstretch_calculate_verts(loop, stroke, object, bm_mod,
method)
# create edges
for i, vert in enumerate(verts_seq):
if i > 0:
bm_mod.edges.new((verts_seq[i-1], verts_seq[i]))
vert.select = True
# connect single vertices to the closest stroke
if singles:
for vert, m_stroke, point in singles:
if m_stroke != stroke:
continue
bm_mod.edges.new((vert, verts_seq[point]))
bm_mod.edges.ensure_lookup_table()
bmesh.update_edit_mesh(object.data)
return(move)
# erases the grease pencil stroke
def gstretch_erase_stroke(stroke, context):
# change 3d coordinate into a stroke-point
def sp(loc, context):
lib = {'name': "",
'pen_flip': False,
'is_start': False,
'location': (0, 0, 0),
'mouse': (view3d_utils.location_3d_to_region_2d(\
context.region, context.space_data.region_3d, loc)),
'pressure': 1,
'size': 0,
'time': 0}
return(lib)
if type(stroke) != bpy.types.GPencilStroke:
# fake stroke, there is nothing to delete
return
erase_stroke = [sp(p.co, context) for p in stroke.points]
if erase_stroke:
erase_stroke[0]['is_start'] = True
bpy.ops.gpencil.draw(mode='ERASER', stroke=erase_stroke)
# get point on stroke, given by relative distance (0.0 - 1.0)
def gstretch_eval_stroke(stroke, distance, stroke_lengths_cache=False):
# use cache if available
if not stroke_lengths_cache:
lengths = [0]
for i, p in enumerate(stroke.points[1:]):
lengths.append((p.co - stroke.points[i].co).length + \
lengths[-1])
total_length = max(lengths[-1], 1e-7)
stroke_lengths_cache = [length / total_length for length in
lengths]
stroke_lengths = stroke_lengths_cache[:]
if distance in stroke_lengths:
loc = stroke.points[stroke_lengths.index(distance)].co
elif distance > stroke_lengths[-1]:
# should be impossible, but better safe than sorry
loc = stroke.points[-1].co
else:
stroke_lengths.append(distance)
stroke_lengths.sort()
stroke_index = stroke_lengths.index(distance)
interval_length = stroke_lengths[stroke_index+1] - \
stroke_lengths[stroke_index-1]
distance_relative = (distance - stroke_lengths[stroke_index-1]) / \
interval_length
interval_vector = stroke.points[stroke_index].co - \
stroke.points[stroke_index-1].co
loc = stroke.points[stroke_index-1].co + \
distance_relative * interval_vector
return(loc, stroke_lengths_cache)
# create fake grease pencil strokes for the active object
def gstretch_get_fake_strokes(object, bm_mod, loops):
strokes = []
for loop in loops:
p1 = object.matrix_world * bm_mod.verts[loop[0][0]].co
p2 = object.matrix_world * bm_mod.verts[loop[0][-1]].co
strokes.append(gstretch_fake_stroke([p1, p2]))
return(strokes)
# get grease pencil strokes for the active object
def gstretch_get_strokes(object, context):
gp = get_grease_pencil(object, context)
if not gp:
return(None)
layer = gp.layers.active
if not layer:
return(None)
frame = layer.active_frame
if not frame:
return(None)
strokes = frame.strokes
if len(strokes) < 1:
return(None)
return(strokes)
# returns a list with loop-stroke pairs
def gstretch_match_loops_strokes(loops, strokes, object, bm_mod):
if not loops or not strokes:
return(None)
# calculate loop centers
loop_centers = []
bm_mod.verts.ensure_lookup_table()
for loop in loops:
center = mathutils.Vector()
for v_index in loop[0]:
center += bm_mod.verts[v_index].co
center /= len(loop[0])
center = object.matrix_world * center
loop_centers.append([center, loop])
# calculate stroke centers
stroke_centers = []
for stroke in strokes:
center = mathutils.Vector()
for p in stroke.points:
center += p.co
center /= len(stroke.points)
stroke_centers.append([center, stroke, 0])
# match, first by stroke use count, then by distance
ls_pairs = []
for lc in loop_centers:
distances = []
for i, sc in enumerate(stroke_centers):
distances.append([sc[2], (lc[0] - sc[0]).length, i])
distances.sort()
best_stroke = distances[0][2]
ls_pairs.append([lc[1], stroke_centers[best_stroke][1]])
stroke_centers[best_stroke][2] += 1 # increase stroke use count
return(ls_pairs)
# match single selected vertices to the closest stroke endpoint
# returns a list of tuples, constructed as: (vertex, stroke, stroke point index)
def gstretch_match_single_verts(bm_mod, strokes, mat_world):
# calculate stroke endpoints in object space
endpoints = []
for stroke in strokes:
endpoints.append((mat_world * stroke.points[0].co, stroke, 0))
endpoints.append((mat_world * stroke.points[-1].co, stroke, -1))
distances = []
# find single vertices (not connected to other selected verts)
for vert in bm_mod.verts:
if not vert.select:
continue
single = True
for edge in vert.link_edges:
if edge.other_vert(vert).select:
single = False
break
if not single:
continue
# calculate distances from vertex to endpoints
distance = [((vert.co - loc).length, vert, stroke, stroke_point,
endpoint_index) for endpoint_index, (loc, stroke, stroke_point) in
enumerate(endpoints)]
distance.sort()
distances.append(distance[0])
# create matches, based on shortest distance first
singles = []
while distances:
distances.sort()
singles.append((distances[0][1], distances[0][2], distances[0][3]))
endpoints.pop(distances[0][4])
distances.pop(0)
distances_new = []
for (i, vert, j, k, l) in distances:
distance_new = [((vert.co - loc).length, vert, stroke, stroke_point,
endpoint_index) for endpoint_index, (loc, stroke,
stroke_point) in enumerate(endpoints)]
distance_new.sort()
distances_new.append(distance_new[0])
distances = distances_new
return(singles)
# returns list with a relative distance (0.0 - 1.0) of each vertex on the loop
def gstretch_relative_lengths(loop, bm_mod):
lengths = [0]
for i, v_index in enumerate(loop[0][1:]):
lengths.append((bm_mod.verts[v_index].co - \
bm_mod.verts[loop[0][i]].co).length + lengths[-1])
total_length = max(lengths[-1], 1e-7)
relative_lengths = [length / total_length for length in
lengths]
return(relative_lengths)
# convert cache-stored strokes into usable (fake) GP strokes
def gstretch_safe_to_true_strokes(safe_strokes):
strokes = []
for safe_stroke in safe_strokes:
strokes.append(gstretch_fake_stroke(safe_stroke))
return(strokes)
# convert a GP stroke into a list of points which can be stored in cache
def gstretch_true_to_safe_strokes(strokes):
safe_strokes = []
for stroke in strokes:
safe_strokes.append([p.co.copy() for p in stroke.points])
return(safe_strokes)
# force consistency in GUI, max value can never be lower than min value
def gstretch_update_max(self, context):
# called from operator settings (after execution)
if 'conversion_min' in self.keys():
if self.conversion_min > self.conversion_max:
self.conversion_max = self.conversion_min
# called from toolbar
else:
lt = context.window_manager.looptools
if lt.gstretch_conversion_min > lt.gstretch_conversion_max:
lt.gstretch_conversion_max = lt.gstretch_conversion_min
# force consistency in GUI, min value can never be higher than max value
def gstretch_update_min(self, context):
# called from operator settings (after execution)
if 'conversion_max' in self.keys():
if self.conversion_max < self.conversion_min:
self.conversion_min = self.conversion_max
# called from toolbar
else:
lt = context.window_manager.looptools
if lt.gstretch_conversion_max < lt.gstretch_conversion_min:
lt.gstretch_conversion_min = lt.gstretch_conversion_max
##########################################
####### Relax functions ##################
##########################################
# create lists with knots and points, all correctly sorted
def relax_calculate_knots(loops):
all_knots = []
all_points = []
for loop, circular in loops:
knots = [[], []]
points = [[], []]
if circular:
if len(loop)%2 == 1: # odd
extend = [False, True, 0, 1, 0, 1]
else: # even
extend = [True, False, 0, 1, 1, 2]
else:
if len(loop)%2 == 1: # odd
extend = [False, False, 0, 1, 1, 2]
else: # even
extend = [False, False, 0, 1, 1, 2]
for j in range(2):
if extend[j]:
loop = [loop[-1]] + loop + [loop[0]]
for i in range(extend[2+2*j], len(loop), 2):
knots[j].append(loop[i])
for i in range(extend[3+2*j], len(loop), 2):
if loop[i] == loop[-1] and not circular:
continue
if len(points[j]) == 0:
points[j].append(loop[i])
elif loop[i] != points[j][0]:
points[j].append(loop[i])
if circular:
if knots[j][0] != knots[j][-1]:
knots[j].append(knots[j][0])
if len(points[1]) == 0:
knots.pop(1)
points.pop(1)
for k in knots:
all_knots.append(k)
for p in points:
all_points.append(p)
return(all_knots, all_points)
# calculate relative positions compared to first knot
def relax_calculate_t(bm_mod, knots, points, regular):
all_tknots = []
all_tpoints = []
for i in range(len(knots)):
amount = len(knots[i]) + len(points[i])
mix = []
for j in range(amount):
if j%2 == 0:
mix.append([True, knots[i][round(j/2)]])
elif j == amount-1:
mix.append([True, knots[i][-1]])
else:
mix.append([False, points[i][int(j/2)]])
len_total = 0
loc_prev = False
tknots = []
tpoints = []
for m in mix:
loc = mathutils.Vector(bm_mod.verts[m[1]].co[:])
if not loc_prev:
loc_prev = loc
len_total += (loc - loc_prev).length
if m[0]:
tknots.append(len_total)
else:
tpoints.append(len_total)
loc_prev = loc
if regular:
tpoints = []
for p in range(len(points[i])):
tpoints.append((tknots[p] + tknots[p+1]) / 2)
all_tknots.append(tknots)
all_tpoints.append(tpoints)
return(all_tknots, all_tpoints)
# change the location of the points to their place on the spline
def relax_calculate_verts(bm_mod, interpolation, tknots, knots, tpoints,
points, splines):
change = []
move = []
for i in range(len(knots)):
for p in points[i]:
m = tpoints[i][points[i].index(p)]
if m in tknots[i]:
n = tknots[i].index(m)
else:
t = tknots[i][:]
t.append(m)
t.sort()
n = t.index(m)-1
if n > len(splines[i]) - 1:
n = len(splines[i]) - 1
elif n < 0:
n = 0
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[i][n][0]
x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
ay, by, cy, dy, ty = splines[i][n][1]
y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
az, bz, cz, dz, tz = splines[i][n][2]
z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
change.append([p, mathutils.Vector([x,y,z])])
else: # interpolation == 'linear'
a, d, t, u = splines[i][n]
if u == 0:
u = 1e-8
change.append([p, ((m-t)/u)*d + a])
for c in change:
move.append([c[0], (bm_mod.verts[c[0]].co + c[1]) / 2])
return(move)
##########################################
####### Space functions ##################
##########################################
# calculate relative positions compared to first knot
def space_calculate_t(bm_mod, knots):
tknots = []
loc_prev = False
len_total = 0
for k in knots:
loc = mathutils.Vector(bm_mod.verts[k].co[:])
if not loc_prev:
loc_prev = loc
len_total += (loc - loc_prev).length
tknots.append(len_total)
loc_prev = loc
amount = len(knots)
t_per_segment = len_total / (amount - 1)
tpoints = [i * t_per_segment for i in range(amount)]
return(tknots, tpoints)
# change the location of the points to their place on the spline
def space_calculate_verts(bm_mod, interpolation, tknots, tpoints, points,
splines):
move = []
for p in points:
m = tpoints[points.index(p)]
if m in tknots:
n = tknots.index(m)
else:
t = tknots[:]
t.append(m)
t.sort()
n = t.index(m) - 1
if n > len(splines) - 1:
n = len(splines) - 1
elif n < 0:
n = 0
if interpolation == 'cubic':
ax, bx, cx, dx, tx = splines[n][0]
x = ax + bx*(m-tx) + cx*(m-tx)**2 + dx*(m-tx)**3
ay, by, cy, dy, ty = splines[n][1]
y = ay + by*(m-ty) + cy*(m-ty)**2 + dy*(m-ty)**3
az, bz, cz, dz, tz = splines[n][2]
z = az + bz*(m-tz) + cz*(m-tz)**2 + dz*(m-tz)**3
move.append([p, mathutils.Vector([x,y,z])])
else: # interpolation == 'linear'
a, d, t, u = splines[n]
move.append([p, ((m-t)/u)*d + a])
return(move)
##########################################
####### Operators ########################
##########################################
# bridge operator
class Bridge(bpy.types.Operator):
bl_idname = 'mesh.looptools_bridge'
bl_label = "Bridge / Loft"
bl_description = "Bridge two, or loft several, loops of vertices"
bl_options = {'REGISTER', 'UNDO'}
cubic_strength = bpy.props.FloatProperty(name = "Strength",
description = "Higher strength results in more fluid curves",
default = 1.0,
soft_min = -3.0,
soft_max = 3.0)
interpolation = bpy.props.EnumProperty(name = "Interpolation mode",
items = (('cubic', "Cubic", "Gives curved results"),
('linear', "Linear", "Basic, fast, straight interpolation")),
description = "Interpolation mode: algorithm used when creating "\
"segments",
default = 'cubic')
loft = bpy.props.BoolProperty(name = "Loft",
description = "Loft multiple loops, instead of considering them as "\
"a multi-input for bridging",
default = False)
loft_loop = bpy.props.BoolProperty(name = "Loop",
description = "Connect the first and the last loop with each other",
default = False)
min_width = bpy.props.IntProperty(name = "Minimum width",
description = "Segments with an edge smaller than this are merged "\
"(compared to base edge)",
default = 0,
min = 0,
max = 100,
subtype = 'PERCENTAGE')
mode = bpy.props.EnumProperty(name = "Mode",
items = (('basic', "Basic", "Fast algorithm"), ('shortest',
"Shortest edge", "Slower algorithm with better vertex matching")),
description = "Algorithm used for bridging",
default = 'shortest')
remove_faces = bpy.props.BoolProperty(name = "Remove faces",
description = "Remove faces that are internal after bridging",
default = True)
reverse = bpy.props.BoolProperty(name = "Reverse",
description = "Manually override the direction in which the loops "\
"are bridged. Only use if the tool gives the wrong " \
"result",
default = False)
segments = bpy.props.IntProperty(name = "Segments",
description = "Number of segments used to bridge the gap "\
"(0 = automatic)",
default = 1,
min = 0,
soft_max = 20)
twist = bpy.props.IntProperty(name = "Twist",
description = "Twist what vertices are connected to each other",
default = 0)
@classmethod
def poll(cls, context):
ob = context.active_object
return (ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
#layout.prop(self, "mode") # no cases yet where 'basic' mode is needed
# top row
col_top = layout.column(align=True)
row = col_top.row(align=True)
col_left = row.column(align=True)
col_right = row.column(align=True)
col_right.active = self.segments != 1
col_left.prop(self, "segments")
col_right.prop(self, "min_width", text="")
# bottom row
bottom_left = col_left.row()
bottom_left.active = self.segments != 1
bottom_left.prop(self, "interpolation", text="")
bottom_right = col_right.row()
bottom_right.active = self.interpolation == 'cubic'
bottom_right.prop(self, "cubic_strength")
# boolean properties
col_top.prop(self, "remove_faces")
if self.loft:
col_top.prop(self, "loft_loop")
# override properties
col_top.separator()
row = layout.row(align = True)
row.prop(self, "twist")
row.prop(self, "reverse")
def invoke(self, context, event):
# load custom settings
context.window_manager.looptools.bridge_loft = self.loft
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, bm = initialise()
edge_faces, edgekey_to_edge, old_selected_faces, smooth = \
bridge_initialise(bm, self.interpolation)
settings_write(self)
# check cache to see if we can save time
input_method = bridge_input_method(self.loft, self.loft_loop)
cached, single_loops, loops, derived, mapping = cache_read("Bridge",
object, bm, input_method, False)
if not cached:
# get loops
loops = bridge_get_input(bm)
if loops:
# reorder loops if there are more than 2
if len(loops) > 2:
if self.loft:
loops = bridge_sort_loops(bm, loops, self.loft_loop)
else:
loops = bridge_match_loops(bm, loops)
# saving cache for faster execution next time
if not cached:
cache_write("Bridge", object, bm, input_method, False, False,
loops, False, False)
if loops:
# calculate new geometry
vertices = []
faces = []
max_vert_index = len(bm.verts)-1
for i in range(1, len(loops)):
if not self.loft and i%2 == 0:
continue
lines = bridge_calculate_lines(bm, loops[i-1:i+1],
self.mode, self.twist, self.reverse)
vertex_normals = bridge_calculate_virtual_vertex_normals(bm,
lines, loops[i-1:i+1], edge_faces, edgekey_to_edge)
segments = bridge_calculate_segments(bm, lines,
loops[i-1:i+1], self.segments)
new_verts, new_faces, max_vert_index = \
bridge_calculate_geometry(bm, lines, vertex_normals,
segments, self.interpolation, self.cubic_strength,
self.min_width, max_vert_index)
if new_verts:
vertices += new_verts
if new_faces:
faces += new_faces
# make sure faces in loops that aren't used, aren't removed
if self.remove_faces and old_selected_faces:
bridge_save_unused_faces(bm, old_selected_faces, loops)
# create vertices
if vertices:
bridge_create_vertices(bm, vertices)
# create faces
if faces:
new_faces = bridge_create_faces(object, bm, faces, self.twist)
old_selected_faces = [i for i, face in enumerate(bm.faces) \
if face.index in old_selected_faces] # updating list
bridge_select_new_faces(new_faces, smooth)
# edge-data could have changed, can't use cache next run
if faces and not vertices:
cache_delete("Bridge")
# delete internal faces
if self.remove_faces and old_selected_faces:
bridge_remove_internal_faces(bm, old_selected_faces)
# make sure normals are facing outside
bmesh.update_edit_mesh(object.data, tessface=False,
destructive=True)
bpy.ops.mesh.normals_make_consistent()
# cleaning up
terminate(global_undo)
return{'FINISHED'}
# circle operator
class Circle(bpy.types.Operator):
bl_idname = "mesh.looptools_circle"
bl_label = "Circle"
bl_description = "Move selected vertices into a circle shape"
bl_options = {'REGISTER', 'UNDO'}
custom_radius = bpy.props.BoolProperty(name = "Radius",
description = "Force a custom radius",
default = False)
fit = bpy.props.EnumProperty(name = "Method",
items = (("best", "Best fit", "Non-linear least squares"),
("inside", "Fit inside","Only move vertices towards the center")),
description = "Method used for fitting a circle to the vertices",
default = 'best')
flatten = bpy.props.BoolProperty(name = "Flatten",
description = "Flatten the circle, instead of projecting it on the " \
"mesh",
default = True)
influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
lock_x = bpy.props.BoolProperty(name = "Lock X",
description = "Lock editing of the x-coordinate",
default = False)
lock_y = bpy.props.BoolProperty(name = "Lock Y",
description = "Lock editing of the y-coordinate",
default = False)
lock_z = bpy.props.BoolProperty(name = "Lock Z",
description = "Lock editing of the z-coordinate",
default = False)
radius = bpy.props.FloatProperty(name = "Radius",
description = "Custom radius for circle",
default = 1.0,
min = 0.0,
soft_max = 1000.0)
regular = bpy.props.BoolProperty(name = "Regular",
description = "Distribute vertices at constant distances along the " \
"circle",
default = True)
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "fit")
col.separator()
col.prop(self, "flatten")
row = col.row(align=True)
row.prop(self, "custom_radius")
row_right = row.row(align=True)
row_right.active = self.custom_radius
row_right.prop(self, "radius", text="")
col.prop(self, "regular")
col.separator()
col_move = col.column(align=True)
row = col_move.row(align=True)
if self.lock_x:
row.prop(self, "lock_x", text = "X", icon='LOCKED')
else:
row.prop(self, "lock_x", text = "X", icon='UNLOCKED')
if self.lock_y:
row.prop(self, "lock_y", text = "Y", icon='LOCKED')
else:
row.prop(self, "lock_y", text = "Y", icon='UNLOCKED')
if self.lock_z:
row.prop(self, "lock_z", text = "Z", icon='LOCKED')
else:
row.prop(self, "lock_z", text = "Z", icon='UNLOCKED')
col_move.prop(self, "influence")
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, bm = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Circle",
object, bm, False, False)
if cached:
derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
else:
# find loops
derived, bm_mod, single_vertices, single_loops, loops = \
circle_get_input(object, bm, context.scene)
mapping = get_mapping(derived, bm, bm_mod, single_vertices,
False, loops)
single_loops, loops = circle_check_loops(single_loops, loops,
mapping, bm_mod)
# saving cache for faster execution next time
if not cached:
cache_write("Circle", object, bm, False, False, single_loops,
loops, derived, mapping)
move = []
for i, loop in enumerate(loops):
# best fitting flat plane
com, normal = calculate_plane(bm_mod, loop)
# if circular, shift loop so we get a good starting vertex
if loop[1]:
loop = circle_shift_loop(bm_mod, loop, com)
# flatten vertices on plane
locs_2d, p, q = circle_3d_to_2d(bm_mod, loop, com, normal)
# calculate circle
if self.fit == 'best':
x0, y0, r = circle_calculate_best_fit(locs_2d)
else: # self.fit == 'inside'
x0, y0, r = circle_calculate_min_fit(locs_2d)
# radius override
if self.custom_radius:
r = self.radius / p.length
# calculate positions on circle
if self.regular:
new_locs_2d = circle_project_regular(locs_2d[:], x0, y0, r)
else:
new_locs_2d = circle_project_non_regular(locs_2d[:], x0, y0, r)
# take influence into account
locs_2d = circle_influence_locs(locs_2d, new_locs_2d,
self.influence)
# calculate 3d positions of the created 2d input
move.append(circle_calculate_verts(self.flatten, bm_mod,
locs_2d, com, p, q, normal))
# flatten single input vertices on plane defined by loop
if self.flatten and single_loops:
move.append(circle_flatten_singles(bm_mod, com, p, q,
normal, single_loops[i]))
# move vertices to new locations
if self.lock_x or self.lock_y or self.lock_z:
lock = [self.lock_x, self.lock_y, self.lock_z]
else:
lock = False
move_verts(object, bm, mapping, move, lock, -1)
# cleaning up
if derived:
bm_mod.free()
terminate(global_undo)
return{'FINISHED'}
# curve operator
class Curve(bpy.types.Operator):
bl_idname = "mesh.looptools_curve"
bl_label = "Curve"
bl_description = "Turn a loop into a smooth curve"
bl_options = {'REGISTER', 'UNDO'}
boundaries = bpy.props.BoolProperty(name = "Boundaries",
description = "Limit the tool to work within the boundaries of the "\
"selected vertices",
default = False)
influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
interpolation = bpy.props.EnumProperty(name = "Interpolation",
items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Simple and fast linear algorithm")),
description = "Algorithm used for interpolation",
default = 'cubic')
lock_x = bpy.props.BoolProperty(name = "Lock X",
description = "Lock editing of the x-coordinate",
default = False)
lock_y = bpy.props.BoolProperty(name = "Lock Y",
description = "Lock editing of the y-coordinate",
default = False)
lock_z = bpy.props.BoolProperty(name = "Lock Z",
description = "Lock editing of the z-coordinate",
default = False)
regular = bpy.props.BoolProperty(name = "Regular",
description = "Distribute vertices at constant distances along the" \
"curve",
default = True)
restriction = bpy.props.EnumProperty(name = "Restriction",
items = (("none", "None", "No restrictions on vertex movement"),
("extrude", "Extrude only","Only allow extrusions (no "\
"indentations)"),
("indent", "Indent only", "Only allow indentation (no "\
"extrusions)")),
description = "Restrictions on how the vertices can be moved",
default = 'none')
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "interpolation")
col.prop(self, "restriction")
col.prop(self, "boundaries")
col.prop(self, "regular")
col.separator()
col_move = col.column(align=True)
row = col_move.row(align=True)
if self.lock_x:
row.prop(self, "lock_x", text = "X", icon='LOCKED')
else:
row.prop(self, "lock_x", text = "X", icon='UNLOCKED')
if self.lock_y:
row.prop(self, "lock_y", text = "Y", icon='LOCKED')
else:
row.prop(self, "lock_y", text = "Y", icon='UNLOCKED')
if self.lock_z:
row.prop(self, "lock_z", text = "Z", icon='LOCKED')
else:
row.prop(self, "lock_z", text = "Z", icon='UNLOCKED')
col_move.prop(self, "influence")
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, bm = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Curve",
object, bm, False, self.boundaries)
if cached:
derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
else:
# find loops
derived, bm_mod, loops = curve_get_input(object, bm,
self.boundaries, context.scene)
mapping = get_mapping(derived, bm, bm_mod, False, True, loops)
loops = check_loops(loops, mapping, bm_mod)
verts_selected = [v.index for v in bm_mod.verts if v.select \
and not v.hide]
# saving cache for faster execution next time
if not cached:
cache_write("Curve", object, bm, False, self.boundaries, False,
loops, derived, mapping)
move = []
for loop in loops:
knots, points = curve_calculate_knots(loop, verts_selected)
pknots = curve_project_knots(bm_mod, verts_selected, knots,
points, loop[1])
tknots, tpoints = curve_calculate_t(bm_mod, knots, points,
pknots, self.regular, loop[1])
splines = calculate_splines(self.interpolation, bm_mod,
tknots, knots)
move.append(curve_calculate_vertices(bm_mod, knots, tknots,
points, tpoints, splines, self.interpolation,
self.restriction))
# move vertices to new locations
if self.lock_x or self.lock_y or self.lock_z:
lock = [self.lock_x, self.lock_y, self.lock_z]
else:
lock = False
move_verts(object, bm, mapping, move, lock, self.influence)
# cleaning up
if derived:
bm_mod.free()
terminate(global_undo)
return{'FINISHED'}
# flatten operator
class Flatten(bpy.types.Operator):
bl_idname = "mesh.looptools_flatten"
bl_label = "Flatten"
bl_description = "Flatten vertices on a best-fitting plane"
bl_options = {'REGISTER', 'UNDO'}
influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
lock_x = bpy.props.BoolProperty(name = "Lock X",
description = "Lock editing of the x-coordinate",
default = False)
lock_y = bpy.props.BoolProperty(name = "Lock Y",
description = "Lock editing of the y-coordinate",
default = False)
lock_z = bpy.props.BoolProperty(name = "Lock Z",
description = "Lock editing of the z-coordinate",
default = False)
plane = bpy.props.EnumProperty(name = "Plane",
items = (("best_fit", "Best fit", "Calculate a best fitting plane"),
("normal", "Normal", "Derive plane from averaging vertex "\
"normals"),
("view", "View", "Flatten on a plane perpendicular to the "\
"viewing angle")),
description = "Plane on which vertices are flattened",
default = 'best_fit')
restriction = bpy.props.EnumProperty(name = "Restriction",
items = (("none", "None", "No restrictions on vertex movement"),
("bounding_box", "Bounding box", "Vertices are restricted to "\
"movement inside the bounding box of the selection")),
description = "Restrictions on how the vertices can be moved",
default = 'none')
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "plane")
#col.prop(self, "restriction")
col.separator()
col_move = col.column(align=True)
row = col_move.row(align=True)
if self.lock_x:
row.prop(self, "lock_x", text = "X", icon='LOCKED')
else:
row.prop(self, "lock_x", text = "X", icon='UNLOCKED')
if self.lock_y:
row.prop(self, "lock_y", text = "Y", icon='LOCKED')
else:
row.prop(self, "lock_y", text = "Y", icon='UNLOCKED')
if self.lock_z:
row.prop(self, "lock_z", text = "Z", icon='LOCKED')
else:
row.prop(self, "lock_z", text = "Z", icon='UNLOCKED')
col_move.prop(self, "influence")
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, bm = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Flatten",
object, bm, False, False)
if not cached:
# order input into virtual loops
loops = flatten_get_input(bm)
loops = check_loops(loops, mapping, bm)
# saving cache for faster execution next time
if not cached:
cache_write("Flatten", object, bm, False, False, False, loops,
False, False)
move = []
for loop in loops:
# calculate plane and position of vertices on them
com, normal = calculate_plane(bm, loop, method=self.plane,
object=object)
to_move = flatten_project(bm, loop, com, normal)
if self.restriction == 'none':
move.append(to_move)
else:
move.append(to_move)
# move vertices to new locations
if self.lock_x or self.lock_y or self.lock_z:
lock = [self.lock_x, self.lock_y, self.lock_z]
else:
lock = False
move_verts(object, bm, False, move, lock, self.influence)
# cleaning up
terminate(global_undo)
return{'FINISHED'}
# gstretch operator
class GStretch(bpy.types.Operator):
bl_idname = "mesh.looptools_gstretch"
bl_label = "Gstretch"
bl_description = "Stretch selected vertices to Grease Pencil stroke"
bl_options = {'REGISTER', 'UNDO'}
conversion = bpy.props.EnumProperty(name = "Conversion",
items = (("distance", "Distance", "Set the distance between vertices "\
"of the converted grease pencil stroke"),
("limit_vertices", "Limit vertices", "Set the minimum and maximum "\
"number of vertices that converted GP strokes will have"),
("vertices", "Exact vertices", "Set the exact number of vertices "\
"that converted grease pencil strokes will have. Short strokes "\
"with few points may contain less vertices than this number."),
("none", "No simplification", "Convert each grease pencil point "\
"to a vertex")),
description = "If grease pencil strokes are converted to geometry, "\
"use this simplification method",
default = 'limit_vertices')
conversion_distance = bpy.props.FloatProperty(name = "Distance",
description = "Absolute distance between vertices along the converted "\
"grease pencil stroke",
default = 0.1,
min = 0.000001,
soft_min = 0.01,
soft_max = 100)
conversion_max = bpy.props.IntProperty(name = "Max Vertices",
description = "Maximum number of vertices grease pencil strokes will "\
"have, when they are converted to geomtery",
default = 32,
min = 3,
soft_max = 500,
update = gstretch_update_min)
conversion_min = bpy.props.IntProperty(name = "Min Vertices",
description = "Minimum number of vertices grease pencil strokes will "\
"have, when they are converted to geomtery",
default = 8,
min = 3,
soft_max = 500,
update = gstretch_update_max)
conversion_vertices = bpy.props.IntProperty(name = "Vertices",
description = "Number of vertices grease pencil strokes will "\
"have, when they are converted to geometry. If strokes have less "\
"points than required, the 'Spread evenly' method is used",
default = 32,
min = 3,
soft_max = 500)
delete_strokes = bpy.props.BoolProperty(name="Delete strokes",
description = "Remove Grease Pencil strokes if they have been used "\
"for Gstretch. WARNING: DOES NOT SUPPORT UNDO",
default = False)
influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
lock_x = bpy.props.BoolProperty(name = "Lock X",
description = "Lock editing of the x-coordinate",
default = False)
lock_y = bpy.props.BoolProperty(name = "Lock Y",
description = "Lock editing of the y-coordinate",
default = False)
lock_z = bpy.props.BoolProperty(name = "Lock Z",
description = "Lock editing of the z-coordinate",
default = False)
method = bpy.props.EnumProperty(name = "Method",
items = (("project", "Project", "Project vertices onto the stroke, "\
"using vertex normals and connected edges"),
("irregular", "Spread", "Distribute vertices along the full "\
"stroke, retaining relative distances between the vertices"),
("regular", "Spread evenly", "Distribute vertices at regular "\
"distances along the full stroke")),
description = "Method of distributing the vertices over the Grease "\
"Pencil stroke",
default = 'regular')
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "method")
col.prop(self, "delete_strokes")
col.separator()
col_conv = col.column(align=True)
col_conv.prop(self, "conversion", text="")
if self.conversion == 'distance':
col_conv.prop(self, "conversion_distance")
elif self.conversion == 'limit_vertices':
row = col_conv.row(align=True)
row.prop(self, "conversion_min", text="Min")
row.prop(self, "conversion_max", text="Max")
elif self.conversion == 'vertices':
col_conv.prop(self, "conversion_vertices")
col.separator()
col_move = col.column(align=True)
row = col_move.row(align=True)
if self.lock_x:
row.prop(self, "lock_x", text = "X", icon='LOCKED')
else:
row.prop(self, "lock_x", text = "X", icon='UNLOCKED')
if self.lock_y:
row.prop(self, "lock_y", text = "Y", icon='LOCKED')
else:
row.prop(self, "lock_y", text = "Y", icon='UNLOCKED')
if self.lock_z:
row.prop(self, "lock_z", text = "Z", icon='LOCKED')
else:
row.prop(self, "lock_z", text = "Z", icon='UNLOCKED')
col_move.prop(self, "influence")
def invoke(self, context, event):
# flush cached strokes
if 'Gstretch' in looptools_cache:
looptools_cache['Gstretch']['single_loops'] = []
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, bm = initialise()
settings_write(self)
# check cache to see if we can save time
cached, safe_strokes, loops, derived, mapping = cache_read("Gstretch",
object, bm, False, False)
if cached:
straightening = False
if safe_strokes:
strokes = gstretch_safe_to_true_strokes(safe_strokes)
# cached strokes were flushed (see operator's invoke function)
elif get_grease_pencil(object, context):
strokes = gstretch_get_strokes(object, context)
else:
# straightening function (no GP) -> loops ignore modifiers
straightening = True
derived = False
bm_mod = bm.copy()
bm_mod.verts.ensure_lookup_table()
bm_mod.edges.ensure_lookup_table()
bm_mod.faces.ensure_lookup_table()
strokes = gstretch_get_fake_strokes(object, bm_mod, loops)
if not straightening:
derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
else:
# get loops and strokes
if get_grease_pencil(object, context):
# find loops
derived, bm_mod, loops = get_connected_input(object, bm,
context.scene, input='selected')
mapping = get_mapping(derived, bm, bm_mod, False, False, loops)
loops = check_loops(loops, mapping, bm_mod)
# get strokes
strokes = gstretch_get_strokes(object, context)
else:
# straightening function (no GP) -> loops ignore modifiers
derived = False
mapping = False
bm_mod = bm.copy()
bm_mod.verts.ensure_lookup_table()
bm_mod.edges.ensure_lookup_table()
bm_mod.faces.ensure_lookup_table()
edge_keys = [edgekey(edge) for edge in bm_mod.edges if \
edge.select and not edge.hide]
loops = get_connected_selections(edge_keys)
loops = check_loops(loops, mapping, bm_mod)
# create fake strokes
strokes = gstretch_get_fake_strokes(object, bm_mod, loops)
# saving cache for faster execution next time
if not cached:
if strokes:
safe_strokes = gstretch_true_to_safe_strokes(strokes)
else:
safe_strokes = []
cache_write("Gstretch", object, bm, False, False,
safe_strokes, loops, derived, mapping)
# pair loops and strokes
ls_pairs = gstretch_match_loops_strokes(loops, strokes, object, bm_mod)
ls_pairs = gstretch_align_pairs(ls_pairs, object, bm_mod, self.method)
move = []
if not loops:
# no selected geometry, convert GP to verts
if strokes:
move.append(gstretch_create_verts(object, bm, strokes,
self.method, self.conversion, self.conversion_distance,
self.conversion_max, self.conversion_min,
self.conversion_vertices))
for stroke in strokes:
gstretch_erase_stroke(stroke, context)
elif ls_pairs:
for (loop, stroke) in ls_pairs:
move.append(gstretch_calculate_verts(loop, stroke, object,
bm_mod, self.method))
if self.delete_strokes:
if type(stroke) != bpy.types.GPencilStroke:
# in case of cached fake stroke, get the real one
if get_grease_pencil(object, context):
strokes = gstretch_get_strokes(object, context)
if loops and strokes:
ls_pairs = gstretch_match_loops_strokes(loops,
strokes, object, bm_mod)
ls_pairs = gstretch_align_pairs(ls_pairs,
object, bm_mod, self.method)
for (l, s) in ls_pairs:
if l == loop:
stroke = s
break
gstretch_erase_stroke(stroke, context)
# move vertices to new locations
if self.lock_x or self.lock_y or self.lock_z:
lock = [self.lock_x, self.lock_y, self.lock_z]
else:
lock = False
bmesh.update_edit_mesh(object.data, tessface=True, destructive=True)
move_verts(object, bm, mapping, move, lock, self.influence)
# cleaning up
if derived:
bm_mod.free()
terminate(global_undo)
return{'FINISHED'}
# relax operator
class Relax(bpy.types.Operator):
bl_idname = "mesh.looptools_relax"
bl_label = "Relax"
bl_description = "Relax the loop, so it is smoother"
bl_options = {'REGISTER', 'UNDO'}
input = bpy.props.EnumProperty(name = "Input",
items = (("all", "Parallel (all)", "Also use non-selected "\
"parallel loops as input"),
("selected", "Selection","Only use selected vertices as input")),
description = "Loops that are relaxed",
default = 'selected')
interpolation = bpy.props.EnumProperty(name = "Interpolation",
items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Simple and fast linear algorithm")),
description = "Algorithm used for interpolation",
default = 'cubic')
iterations = bpy.props.EnumProperty(name = "Iterations",
items = (("1", "1", "One"),
("3", "3", "Three"),
("5", "5", "Five"),
("10", "10", "Ten"),
("25", "25", "Twenty-five")),
description = "Number of times the loop is relaxed",
default = "1")
regular = bpy.props.BoolProperty(name = "Regular",
description = "Distribute vertices at constant distances along the" \
"loop",
default = True)
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "interpolation")
col.prop(self, "input")
col.prop(self, "iterations")
col.prop(self, "regular")
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, bm = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Relax",
object, bm, self.input, False)
if cached:
derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
else:
# find loops
derived, bm_mod, loops = get_connected_input(object, bm,
context.scene, self.input)
mapping = get_mapping(derived, bm, bm_mod, False, False, loops)
loops = check_loops(loops, mapping, bm_mod)
knots, points = relax_calculate_knots(loops)
# saving cache for faster execution next time
if not cached:
cache_write("Relax", object, bm, self.input, False, False, loops,
derived, mapping)
for iteration in range(int(self.iterations)):
# calculate splines and new positions
tknots, tpoints = relax_calculate_t(bm_mod, knots, points,
self.regular)
splines = []
for i in range(len(knots)):
splines.append(calculate_splines(self.interpolation, bm_mod,
tknots[i], knots[i]))
move = [relax_calculate_verts(bm_mod, self.interpolation,
tknots, knots, tpoints, points, splines)]
move_verts(object, bm, mapping, move, False, -1)
# cleaning up
if derived:
bm_mod.free()
terminate(global_undo)
return{'FINISHED'}
# space operator
class Space(bpy.types.Operator):
bl_idname = "mesh.looptools_space"
bl_label = "Space"
bl_description = "Space the vertices in a regular distrubtion on the loop"
bl_options = {'REGISTER', 'UNDO'}
influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
input = bpy.props.EnumProperty(name = "Input",
items = (("all", "Parallel (all)", "Also use non-selected "\
"parallel loops as input"),
("selected", "Selection","Only use selected vertices as input")),
description = "Loops that are spaced",
default = 'selected')
interpolation = bpy.props.EnumProperty(name = "Interpolation",
items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Vertices are projected on existing edges")),
description = "Algorithm used for interpolation",
default = 'cubic')
lock_x = bpy.props.BoolProperty(name = "Lock X",
description = "Lock editing of the x-coordinate",
default = False)
lock_y = bpy.props.BoolProperty(name = "Lock Y",
description = "Lock editing of the y-coordinate",
default = False)
lock_z = bpy.props.BoolProperty(name = "Lock Z",
description = "Lock editing of the z-coordinate",
default = False)
@classmethod
def poll(cls, context):
ob = context.active_object
return(ob and ob.type == 'MESH' and context.mode == 'EDIT_MESH')
def draw(self, context):
layout = self.layout
col = layout.column()
col.prop(self, "interpolation")
col.prop(self, "input")
col.separator()
col_move = col.column(align=True)
row = col_move.row(align=True)
if self.lock_x:
row.prop(self, "lock_x", text = "X", icon='LOCKED')
else:
row.prop(self, "lock_x", text = "X", icon='UNLOCKED')
if self.lock_y:
row.prop(self, "lock_y", text = "Y", icon='LOCKED')
else:
row.prop(self, "lock_y", text = "Y", icon='UNLOCKED')
if self.lock_z:
row.prop(self, "lock_z", text = "Z", icon='LOCKED')
else:
row.prop(self, "lock_z", text = "Z", icon='UNLOCKED')
col_move.prop(self, "influence")
def invoke(self, context, event):
# load custom settings
settings_load(self)
return self.execute(context)
def execute(self, context):
# initialise
global_undo, object, bm = initialise()
settings_write(self)
# check cache to see if we can save time
cached, single_loops, loops, derived, mapping = cache_read("Space",
object, bm, self.input, False)
if cached:
derived, bm_mod = get_derived_bmesh(object, bm, context.scene)
else:
# find loops
derived, bm_mod, loops = get_connected_input(object, bm,
context.scene, self.input)
mapping = get_mapping(derived, bm, bm_mod, False, False, loops)
loops = check_loops(loops, mapping, bm_mod)
# saving cache for faster execution next time
if not cached:
cache_write("Space", object, bm, self.input, False, False, loops,
derived, mapping)
move = []
for loop in loops:
# calculate splines and new positions
if loop[1]: # circular
loop[0].append(loop[0][0])
tknots, tpoints = space_calculate_t(bm_mod, loop[0][:])
splines = calculate_splines(self.interpolation, bm_mod,
tknots, loop[0][:])
move.append(space_calculate_verts(bm_mod, self.interpolation,
tknots, tpoints, loop[0][:-1], splines))
# move vertices to new locations
if self.lock_x or self.lock_y or self.lock_z:
lock = [self.lock_x, self.lock_y, self.lock_z]
else:
lock = False
move_verts(object, bm, mapping, move, lock, self.influence)
# cleaning up
if derived:
bm_mod.free()
terminate(global_undo)
return{'FINISHED'}
##########################################
####### GUI and registration #############
##########################################
# menu containing all tools
class VIEW3D_MT_edit_mesh_looptools(bpy.types.Menu):
bl_label = "LoopTools"
def draw(self, context):
layout = self.layout
layout.operator("mesh.looptools_bridge", text="Bridge").loft = False
layout.operator("mesh.looptools_circle")
layout.operator("mesh.looptools_curve")
layout.operator("mesh.looptools_flatten")
layout.operator("mesh.looptools_gstretch")
layout.operator("mesh.looptools_bridge", text="Loft").loft = True
layout.operator("mesh.looptools_relax")
layout.operator("mesh.looptools_space")
# panel containing all tools
class VIEW3D_PT_tools_looptools(bpy.types.Panel):
bl_space_type = 'VIEW_3D'
bl_region_type = 'TOOLS'
bl_category = 'Tools'
bl_context = "mesh_edit"
bl_label = "LoopTools"
bl_options = {'DEFAULT_CLOSED'}
def draw(self, context):
layout = self.layout
col = layout.column(align=True)
lt = context.window_manager.looptools
# bridge - first line
split = col.split(percentage=0.15, align=True)
if lt.display_bridge:
split.prop(lt, "display_bridge", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_bridge", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_bridge", text="Bridge").loft = False
# bridge - settings
if lt.display_bridge:
box = col.column(align=True).box().column()
#box.prop(self, "mode")
# top row
col_top = box.column(align=True)
row = col_top.row(align=True)
col_left = row.column(align=True)
col_right = row.column(align=True)
col_right.active = lt.bridge_segments != 1
col_left.prop(lt, "bridge_segments")
col_right.prop(lt, "bridge_min_width", text="")
# bottom row
bottom_left = col_left.row()
bottom_left.active = lt.bridge_segments != 1
bottom_left.prop(lt, "bridge_interpolation", text="")
bottom_right = col_right.row()
bottom_right.active = lt.bridge_interpolation == 'cubic'
bottom_right.prop(lt, "bridge_cubic_strength")
# boolean properties
col_top.prop(lt, "bridge_remove_faces")
# override properties
col_top.separator()
row = box.row(align = True)
row.prop(lt, "bridge_twist")
row.prop(lt, "bridge_reverse")
# circle - first line
split = col.split(percentage=0.15, align=True)
if lt.display_circle:
split.prop(lt, "display_circle", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_circle", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_circle")
# circle - settings
if lt.display_circle:
box = col.column(align=True).box().column()
box.prop(lt, "circle_fit")
box.separator()
box.prop(lt, "circle_flatten")
row = box.row(align=True)
row.prop(lt, "circle_custom_radius")
row_right = row.row(align=True)
row_right.active = lt.circle_custom_radius
row_right.prop(lt, "circle_radius", text="")
box.prop(lt, "circle_regular")
box.separator()
col_move = box.column(align=True)
row = col_move.row(align=True)
if lt.circle_lock_x:
row.prop(lt, "circle_lock_x", text = "X", icon='LOCKED')
else:
row.prop(lt, "circle_lock_x", text = "X", icon='UNLOCKED')
if lt.circle_lock_y:
row.prop(lt, "circle_lock_y", text = "Y", icon='LOCKED')
else:
row.prop(lt, "circle_lock_y", text = "Y", icon='UNLOCKED')
if lt.circle_lock_z:
row.prop(lt, "circle_lock_z", text = "Z", icon='LOCKED')
else:
row.prop(lt, "circle_lock_z", text = "Z", icon='UNLOCKED')
col_move.prop(lt, "circle_influence")
# curve - first line
split = col.split(percentage=0.15, align=True)
if lt.display_curve:
split.prop(lt, "display_curve", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_curve", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_curve")
# curve - settings
if lt.display_curve:
box = col.column(align=True).box().column()
box.prop(lt, "curve_interpolation")
box.prop(lt, "curve_restriction")
box.prop(lt, "curve_boundaries")
box.prop(lt, "curve_regular")
box.separator()
col_move = box.column(align=True)
row = col_move.row(align=True)
if lt.curve_lock_x:
row.prop(lt, "curve_lock_x", text = "X", icon='LOCKED')
else:
row.prop(lt, "curve_lock_x", text = "X", icon='UNLOCKED')
if lt.curve_lock_y:
row.prop(lt, "curve_lock_y", text = "Y", icon='LOCKED')
else:
row.prop(lt, "curve_lock_y", text = "Y", icon='UNLOCKED')
if lt.curve_lock_z:
row.prop(lt, "curve_lock_z", text = "Z", icon='LOCKED')
else:
row.prop(lt, "curve_lock_z", text = "Z", icon='UNLOCKED')
col_move.prop(lt, "curve_influence")
# flatten - first line
split = col.split(percentage=0.15, align=True)
if lt.display_flatten:
split.prop(lt, "display_flatten", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_flatten", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_flatten")
# flatten - settings
if lt.display_flatten:
box = col.column(align=True).box().column()
box.prop(lt, "flatten_plane")
#box.prop(lt, "flatten_restriction")
box.separator()
col_move = box.column(align=True)
row = col_move.row(align=True)
if lt.flatten_lock_x:
row.prop(lt, "flatten_lock_x", text = "X", icon='LOCKED')
else:
row.prop(lt, "flatten_lock_x", text = "X", icon='UNLOCKED')
if lt.flatten_lock_y:
row.prop(lt, "flatten_lock_y", text = "Y", icon='LOCKED')
else:
row.prop(lt, "flatten_lock_y", text = "Y", icon='UNLOCKED')
if lt.flatten_lock_z:
row.prop(lt, "flatten_lock_z", text = "Z", icon='LOCKED')
else:
row.prop(lt, "flatten_lock_z", text = "Z", icon='UNLOCKED')
col_move.prop(lt, "flatten_influence")
# gstretch - first line
split = col.split(percentage=0.15, align=True)
if lt.display_gstretch:
split.prop(lt, "display_gstretch", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_gstretch", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_gstretch")
# gstretch settings
if lt.display_gstretch:
box = col.column(align=True).box().column()
box.prop(lt, "gstretch_method")
box.prop(lt, "gstretch_delete_strokes")
box.separator()
col_conv = box.column(align=True)
col_conv.prop(lt, "gstretch_conversion", text="")
if lt.gstretch_conversion == 'distance':
col_conv.prop(lt, "gstretch_conversion_distance")
elif lt.gstretch_conversion == 'limit_vertices':
row = col_conv.row(align=True)
row.prop(lt, "gstretch_conversion_min", text="Min")
row.prop(lt, "gstretch_conversion_max", text="Max")
elif lt.gstretch_conversion == 'vertices':
col_conv.prop(lt, "gstretch_conversion_vertices")
box.separator()
col_move = box.column(align=True)
row = col_move.row(align=True)
if lt.gstretch_lock_x:
row.prop(lt, "gstretch_lock_x", text = "X", icon='LOCKED')
else:
row.prop(lt, "gstretch_lock_x", text = "X", icon='UNLOCKED')
if lt.gstretch_lock_y:
row.prop(lt, "gstretch_lock_y", text = "Y", icon='LOCKED')
else:
row.prop(lt, "gstretch_lock_y", text = "Y", icon='UNLOCKED')
if lt.gstretch_lock_z:
row.prop(lt, "gstretch_lock_z", text = "Z", icon='LOCKED')
else:
row.prop(lt, "gstretch_lock_z", text = "Z", icon='UNLOCKED')
col_move.prop(lt, "gstretch_influence")
# loft - first line
split = col.split(percentage=0.15, align=True)
if lt.display_loft:
split.prop(lt, "display_loft", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_loft", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_bridge", text="Loft").loft = True
# loft - settings
if lt.display_loft:
box = col.column(align=True).box().column()
#box.prop(self, "mode")
# top row
col_top = box.column(align=True)
row = col_top.row(align=True)
col_left = row.column(align=True)
col_right = row.column(align=True)
col_right.active = lt.bridge_segments != 1
col_left.prop(lt, "bridge_segments")
col_right.prop(lt, "bridge_min_width", text="")
# bottom row
bottom_left = col_left.row()
bottom_left.active = lt.bridge_segments != 1
bottom_left.prop(lt, "bridge_interpolation", text="")
bottom_right = col_right.row()
bottom_right.active = lt.bridge_interpolation == 'cubic'
bottom_right.prop(lt, "bridge_cubic_strength")
# boolean properties
col_top.prop(lt, "bridge_remove_faces")
col_top.prop(lt, "bridge_loft_loop")
# override properties
col_top.separator()
row = box.row(align = True)
row.prop(lt, "bridge_twist")
row.prop(lt, "bridge_reverse")
# relax - first line
split = col.split(percentage=0.15, align=True)
if lt.display_relax:
split.prop(lt, "display_relax", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_relax", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_relax")
# relax - settings
if lt.display_relax:
box = col.column(align=True).box().column()
box.prop(lt, "relax_interpolation")
box.prop(lt, "relax_input")
box.prop(lt, "relax_iterations")
box.prop(lt, "relax_regular")
# space - first line
split = col.split(percentage=0.15, align=True)
if lt.display_space:
split.prop(lt, "display_space", text="", icon='DOWNARROW_HLT')
else:
split.prop(lt, "display_space", text="", icon='RIGHTARROW')
split.operator("mesh.looptools_space")
# space - settings
if lt.display_space:
box = col.column(align=True).box().column()
box.prop(lt, "space_interpolation")
box.prop(lt, "space_input")
box.separator()
col_move = box.column(align=True)
row = col_move.row(align=True)
if lt.space_lock_x:
row.prop(lt, "space_lock_x", text = "X", icon='LOCKED')
else:
row.prop(lt, "space_lock_x", text = "X", icon='UNLOCKED')
if lt.space_lock_y:
row.prop(lt, "space_lock_y", text = "Y", icon='LOCKED')
else:
row.prop(lt, "space_lock_y", text = "Y", icon='UNLOCKED')
if lt.space_lock_z:
row.prop(lt, "space_lock_z", text = "Z", icon='LOCKED')
else:
row.prop(lt, "space_lock_z", text = "Z", icon='UNLOCKED')
col_move.prop(lt, "space_influence")
# property group containing all properties for the gui in the panel
class LoopToolsProps(bpy.types.PropertyGroup):
"""
Fake module like class
bpy.context.window_manager.looptools
"""
# general display properties
display_bridge = bpy.props.BoolProperty(name = "Bridge settings",
description = "Display settings of the Bridge tool",
default = False)
display_circle = bpy.props.BoolProperty(name = "Circle settings",
description = "Display settings of the Circle tool",
default = False)
display_curve = bpy.props.BoolProperty(name = "Curve settings",
description = "Display settings of the Curve tool",
default = False)
display_flatten = bpy.props.BoolProperty(name = "Flatten settings",
description = "Display settings of the Flatten tool",
default = False)
display_gstretch = bpy.props.BoolProperty(name = "Gstretch settings",
description = "Display settings of the Gstretch tool",
default = False)
display_loft = bpy.props.BoolProperty(name = "Loft settings",
description = "Display settings of the Loft tool",
default = False)
display_relax = bpy.props.BoolProperty(name = "Relax settings",
description = "Display settings of the Relax tool",
default = False)
display_space = bpy.props.BoolProperty(name = "Space settings",
description = "Display settings of the Space tool",
default = False)
# bridge properties
bridge_cubic_strength = bpy.props.FloatProperty(name = "Strength",
description = "Higher strength results in more fluid curves",
default = 1.0,
soft_min = -3.0,
soft_max = 3.0)
bridge_interpolation = bpy.props.EnumProperty(name = "Interpolation mode",
items = (('cubic', "Cubic", "Gives curved results"),
('linear', "Linear", "Basic, fast, straight interpolation")),
description = "Interpolation mode: algorithm used when creating "\
"segments",
default = 'cubic')
bridge_loft = bpy.props.BoolProperty(name = "Loft",
description = "Loft multiple loops, instead of considering them as "\
"a multi-input for bridging",
default = False)
bridge_loft_loop = bpy.props.BoolProperty(name = "Loop",
description = "Connect the first and the last loop with each other",
default = False)
bridge_min_width = bpy.props.IntProperty(name = "Minimum width",
description = "Segments with an edge smaller than this are merged "\
"(compared to base edge)",
default = 0,
min = 0,
max = 100,
subtype = 'PERCENTAGE')
bridge_mode = bpy.props.EnumProperty(name = "Mode",
items = (('basic', "Basic", "Fast algorithm"),
('shortest', "Shortest edge", "Slower algorithm with " \
"better vertex matching")),
description = "Algorithm used for bridging",
default = 'shortest')
bridge_remove_faces = bpy.props.BoolProperty(name = "Remove faces",
description = "Remove faces that are internal after bridging",
default = True)
bridge_reverse = bpy.props.BoolProperty(name = "Reverse",
description = "Manually override the direction in which the loops "\
"are bridged. Only use if the tool gives the wrong " \
"result",
default = False)
bridge_segments = bpy.props.IntProperty(name = "Segments",
description = "Number of segments used to bridge the gap "\
"(0 = automatic)",
default = 1,
min = 0,
soft_max = 20)
bridge_twist = bpy.props.IntProperty(name = "Twist",
description = "Twist what vertices are connected to each other",
default = 0)
# circle properties
circle_custom_radius = bpy.props.BoolProperty(name = "Radius",
description = "Force a custom radius",
default = False)
circle_fit = bpy.props.EnumProperty(name = "Method",
items = (("best", "Best fit", "Non-linear least squares"),
("inside", "Fit inside","Only move vertices towards the center")),
description = "Method used for fitting a circle to the vertices",
default = 'best')
circle_flatten = bpy.props.BoolProperty(name = "Flatten",
description = "Flatten the circle, instead of projecting it on the " \
"mesh",
default = True)
circle_influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
circle_lock_x = bpy.props.BoolProperty(name = "Lock X",
description = "Lock editing of the x-coordinate",
default = False)
circle_lock_y = bpy.props.BoolProperty(name = "Lock Y",
description = "Lock editing of the y-coordinate",
default = False)
circle_lock_z = bpy.props.BoolProperty(name = "Lock Z",
description = "Lock editing of the z-coordinate",
default = False)
circle_radius = bpy.props.FloatProperty(name = "Radius",
description = "Custom radius for circle",
default = 1.0,
min = 0.0,
soft_max = 1000.0)
circle_regular = bpy.props.BoolProperty(name = "Regular",
description = "Distribute vertices at constant distances along the " \
"circle",
default = True)
# curve properties
curve_boundaries = bpy.props.BoolProperty(name = "Boundaries",
description = "Limit the tool to work within the boundaries of the "\
"selected vertices",
default = False)
curve_influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
curve_interpolation = bpy.props.EnumProperty(name = "Interpolation",
items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Simple and fast linear algorithm")),
description = "Algorithm used for interpolation",
default = 'cubic')
curve_lock_x = bpy.props.BoolProperty(name = "Lock X",
description = "Lock editing of the x-coordinate",
default = False)
curve_lock_y = bpy.props.BoolProperty(name = "Lock Y",
description = "Lock editing of the y-coordinate",
default = False)
curve_lock_z = bpy.props.BoolProperty(name = "Lock Z",
description = "Lock editing of the z-coordinate",
default = False)
curve_regular = bpy.props.BoolProperty(name = "Regular",
description = "Distribute vertices at constant distances along the " \
"curve",
default = True)
curve_restriction = bpy.props.EnumProperty(name = "Restriction",
items = (("none", "None", "No restrictions on vertex movement"),
("extrude", "Extrude only","Only allow extrusions (no "\
"indentations)"),
("indent", "Indent only", "Only allow indentation (no "\
"extrusions)")),
description = "Restrictions on how the vertices can be moved",
default = 'none')
# flatten properties
flatten_influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
flatten_lock_x = bpy.props.BoolProperty(name = "Lock X",
description = "Lock editing of the x-coordinate",
default = False)
flatten_lock_y = bpy.props.BoolProperty(name = "Lock Y",
description = "Lock editing of the y-coordinate",
default = False)
flatten_lock_z = bpy.props.BoolProperty(name = "Lock Z",
description = "Lock editing of the z-coordinate",
default = False)
flatten_plane = bpy.props.EnumProperty(name = "Plane",
items = (("best_fit", "Best fit", "Calculate a best fitting plane"),
("normal", "Normal", "Derive plane from averaging vertex "\
"normals"),
("view", "View", "Flatten on a plane perpendicular to the "\
"viewing angle")),
description = "Plane on which vertices are flattened",
default = 'best_fit')
flatten_restriction = bpy.props.EnumProperty(name = "Restriction",
items = (("none", "None", "No restrictions on vertex movement"),
("bounding_box", "Bounding box", "Vertices are restricted to "\
"movement inside the bounding box of the selection")),
description = "Restrictions on how the vertices can be moved",
default = 'none')
# gstretch properties
gstretch_conversion = bpy.props.EnumProperty(name = "Conversion",
items = (("distance", "Distance", "Set the distance between vertices "\
"of the converted grease pencil stroke"),
("limit_vertices", "Limit vertices", "Set the minimum and maximum "\
"number of vertices that converted GP strokes will have"),
("vertices", "Exact vertices", "Set the exact number of vertices "\
"that converted grease pencil strokes will have. Short strokes "\
"with few points may contain less vertices than this number."),
("none", "No simplification", "Convert each grease pencil point "\
"to a vertex")),
description = "If grease pencil strokes are converted to geometry, "\
"use this simplification method",
default = 'limit_vertices')
gstretch_conversion_distance = bpy.props.FloatProperty(name = "Distance",
description = "Absolute distance between vertices along the converted "\
"grease pencil stroke",
default = 0.1,
min = 0.000001,
soft_min = 0.01,
soft_max = 100)
gstretch_conversion_max = bpy.props.IntProperty(name = "Max Vertices",
description = "Maximum number of vertices grease pencil strokes will "\
"have, when they are converted to geomtery",
default = 32,
min = 3,
soft_max = 500,
update = gstretch_update_min)
gstretch_conversion_min = bpy.props.IntProperty(name = "Min Vertices",
description = "Minimum number of vertices grease pencil strokes will "\
"have, when they are converted to geomtery",
default = 8,
min = 3,
soft_max = 500,
update = gstretch_update_max)
gstretch_conversion_vertices = bpy.props.IntProperty(name = "Vertices",
description = "Number of vertices grease pencil strokes will "\
"have, when they are converted to geometry. If strokes have less "\
"points than required, the 'Spread evenly' method is used",
default = 32,
min = 3,
soft_max = 500)
gstretch_delete_strokes = bpy.props.BoolProperty(name="Delete strokes",
description = "Remove Grease Pencil strokes if they have been used "\
"for Gstretch. WARNING: DOES NOT SUPPORT UNDO",
default = False)
gstretch_influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
gstretch_lock_x = bpy.props.BoolProperty(name = "Lock X",
description = "Lock editing of the x-coordinate",
default = False)
gstretch_lock_y = bpy.props.BoolProperty(name = "Lock Y",
description = "Lock editing of the y-coordinate",
default = False)
gstretch_lock_z = bpy.props.BoolProperty(name = "Lock Z",
description = "Lock editing of the z-coordinate",
default = False)
gstretch_method = bpy.props.EnumProperty(name = "Method",
items = (("project", "Project", "Project vertices onto the stroke, "\
"using vertex normals and connected edges"),
("irregular", "Spread", "Distribute vertices along the full "\
"stroke, retaining relative distances between the vertices"),
("regular", "Spread evenly", "Distribute vertices at regular "\
"distances along the full stroke")),
description = "Method of distributing the vertices over the Grease "\
"Pencil stroke",
default = 'regular')
# relax properties
relax_input = bpy.props.EnumProperty(name = "Input",
items = (("all", "Parallel (all)", "Also use non-selected "\
"parallel loops as input"),
("selected", "Selection","Only use selected vertices as input")),
description = "Loops that are relaxed",
default = 'selected')
relax_interpolation = bpy.props.EnumProperty(name = "Interpolation",
items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Simple and fast linear algorithm")),
description = "Algorithm used for interpolation",
default = 'cubic')
relax_iterations = bpy.props.EnumProperty(name = "Iterations",
items = (("1", "1", "One"),
("3", "3", "Three"),
("5", "5", "Five"),
("10", "10", "Ten"),
("25", "25", "Twenty-five")),
description = "Number of times the loop is relaxed",
default = "1")
relax_regular = bpy.props.BoolProperty(name = "Regular",
description = "Distribute vertices at constant distances along the" \
"loop",
default = True)
# space properties
space_influence = bpy.props.FloatProperty(name = "Influence",
description = "Force of the tool",
default = 100.0,
min = 0.0,
max = 100.0,
precision = 1,
subtype = 'PERCENTAGE')
space_input = bpy.props.EnumProperty(name = "Input",
items = (("all", "Parallel (all)", "Also use non-selected "\
"parallel loops as input"),
("selected", "Selection","Only use selected vertices as input")),
description = "Loops that are spaced",
default = 'selected')
space_interpolation = bpy.props.EnumProperty(name = "Interpolation",
items = (("cubic", "Cubic", "Natural cubic spline, smooth results"),
("linear", "Linear", "Vertices are projected on existing edges")),
description = "Algorithm used for interpolation",
default = 'cubic')
space_lock_x = bpy.props.BoolProperty(name = "Lock X",
description = "Lock editing of the x-coordinate",
default = False)
space_lock_y = bpy.props.BoolProperty(name = "Lock Y",
description = "Lock editing of the y-coordinate",
default = False)
space_lock_z = bpy.props.BoolProperty(name = "Lock Z",
description = "Lock editing of the z-coordinate",
default = False)
# draw function for integration in menus
def menu_func(self, context):
self.layout.menu("VIEW3D_MT_edit_mesh_looptools")
self.layout.separator()
# define classes for registration
classes = [VIEW3D_MT_edit_mesh_looptools,
VIEW3D_PT_tools_looptools,
LoopToolsProps,
Bridge,
Circle,
Curve,
Flatten,
GStretch,
Relax,
Space]
# registering and menu integration
def register():
for c in classes:
bpy.utils.register_class(c)
bpy.types.VIEW3D_MT_edit_mesh_specials.prepend(menu_func)
bpy.types.WindowManager.looptools = bpy.props.PointerProperty(\
type = LoopToolsProps)
# unregistering and removing menus
def unregister():
for c in classes:
bpy.utils.unregister_class(c)
bpy.types.VIEW3D_MT_edit_mesh_specials.remove(menu_func)
try:
del bpy.types.WindowManager.looptools
except:
pass
if __name__ == "__main__":
register()