mirror of
https://github.com/blender/blender-addons.git
synced 2025-08-20 13:22:58 +00:00

This can cause bugs where if the operator throws an exception, undo is not properly enabled again. There have been maybe a dozen Blender bug reports related to this. This could get worse now that we are autosaving preferences. Some add-ons guard against this, but turning off undo should not be needed in the first place. If the operator is set to do an undo push, any operators it calls will automatically not do any undo pushes. If this fail in some cases, it should be reported as a bug in Blender. I could not find issues or a performance impact testing a few add-ons though. Differential Revision: https://developer.blender.org/D4908
512 lines
22 KiB
Python
512 lines
22 KiB
Python
# GPL # "author": "DreamPainter"
|
|
|
|
import bpy
|
|
from math import sqrt
|
|
from mathutils import Vector
|
|
from functools import reduce
|
|
from bpy.props import (
|
|
FloatProperty,
|
|
EnumProperty,
|
|
BoolProperty,
|
|
)
|
|
from bpy_extras.object_utils import object_data_add
|
|
|
|
|
|
# this function creates a chain of quads and, when necessary, a remaining tri
|
|
# for each polygon created in this script. be aware though, that this function
|
|
# assumes each polygon is convex.
|
|
# poly: list of faces, or a single face, like those
|
|
# needed for mesh.from_pydata.
|
|
# returns the tessellated faces.
|
|
|
|
def createPolys(poly):
|
|
# check for faces
|
|
if len(poly) == 0:
|
|
return []
|
|
# one or more faces
|
|
if type(poly[0]) == type(1):
|
|
poly = [poly] # if only one, make it a list of one face
|
|
faces = []
|
|
for i in poly:
|
|
L = len(i)
|
|
# let all faces of 3 or 4 verts be
|
|
if L < 5:
|
|
faces.append(i)
|
|
# split all polygons in half and bridge the two halves
|
|
else:
|
|
f = [[i[x], i[x + 1], i[L - 2 - x], i[L - 1 - x]] for x in range(L // 2 - 1)]
|
|
faces.extend(f)
|
|
if L & 1 == 1:
|
|
faces.append([i[L // 2 - 1 + x] for x in [0, 1, 2]])
|
|
return faces
|
|
|
|
|
|
# function to make the reduce function work as a workaround to sum a list of vectors
|
|
|
|
def vSum(list):
|
|
return reduce(lambda a, b: a + b, list)
|
|
|
|
|
|
# creates the 5 platonic solids as a base for the rest
|
|
# plato: should be one of {"4","6","8","12","20"}. decides what solid the
|
|
# outcome will be.
|
|
# returns a list of vertices and faces
|
|
|
|
def source(plato):
|
|
verts = []
|
|
faces = []
|
|
|
|
# Tetrahedron
|
|
if plato == "4":
|
|
# Calculate the necessary constants
|
|
s = sqrt(2) / 3.0
|
|
t = -1 / 3
|
|
u = sqrt(6) / 3
|
|
|
|
# create the vertices and faces
|
|
v = [(0, 0, 1), (2 * s, 0, t), (-s, u, t), (-s, -u, t)]
|
|
faces = [[0, 1, 2], [0, 2, 3], [0, 3, 1], [1, 3, 2]]
|
|
|
|
# Hexahedron (cube)
|
|
elif plato == "6":
|
|
# Calculate the necessary constants
|
|
s = 1 / sqrt(3)
|
|
|
|
# create the vertices and faces
|
|
v = [(-s, -s, -s), (s, -s, -s), (s, s, -s), (-s, s, -s), (-s, -s, s), (s, -s, s), (s, s, s), (-s, s, s)]
|
|
faces = [[0, 3, 2, 1], [0, 1, 5, 4], [0, 4, 7, 3], [6, 5, 1, 2], [6, 2, 3, 7], [6, 7, 4, 5]]
|
|
|
|
# Octahedron
|
|
elif plato == "8":
|
|
# create the vertices and faces
|
|
v = [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]
|
|
faces = [[4, 0, 2], [4, 2, 1], [4, 1, 3], [4, 3, 0], [5, 2, 0], [5, 1, 2], [5, 3, 1], [5, 0, 3]]
|
|
|
|
# Dodecahedron
|
|
elif plato == "12":
|
|
# Calculate the necessary constants
|
|
s = 1 / sqrt(3)
|
|
t = sqrt((3 - sqrt(5)) / 6)
|
|
u = sqrt((3 + sqrt(5)) / 6)
|
|
|
|
# create the vertices and faces
|
|
v = [(s, s, s), (s, s, -s), (s, -s, s), (s, -s, -s), (-s, s, s), (-s, s, -s), (-s, -s, s), (-s, -s, -s),
|
|
(t, u, 0), (-t, u, 0), (t, -u, 0), (-t, -u, 0), (u, 0, t), (u, 0, -t), (-u, 0, t), (-u, 0, -t), (0, t, u),
|
|
(0, -t, u), (0, t, -u), (0, -t, -u)]
|
|
faces = [[0, 8, 9, 4, 16], [0, 12, 13, 1, 8], [0, 16, 17, 2, 12], [8, 1, 18, 5, 9], [12, 2, 10, 3, 13],
|
|
[16, 4, 14, 6, 17], [9, 5, 15, 14, 4], [6, 11, 10, 2, 17], [3, 19, 18, 1, 13], [7, 15, 5, 18, 19],
|
|
[7, 11, 6, 14, 15], [7, 19, 3, 10, 11]]
|
|
|
|
# Icosahedron
|
|
elif plato == "20":
|
|
# Calculate the necessary constants
|
|
s = (1 + sqrt(5)) / 2
|
|
t = sqrt(1 + s * s)
|
|
s = s / t
|
|
t = 1 / t
|
|
|
|
# create the vertices and faces
|
|
v = [(s, t, 0), (-s, t, 0), (s, -t, 0), (-s, -t, 0), (t, 0, s), (t, 0, -s), (-t, 0, s), (-t, 0, -s),
|
|
(0, s, t), (0, -s, t), (0, s, -t), (0, -s, -t)]
|
|
faces = [[0, 8, 4], [0, 5, 10], [2, 4, 9], [2, 11, 5], [1, 6, 8], [1, 10, 7], [3, 9, 6], [3, 7, 11],
|
|
[0, 10, 8], [1, 8, 10], [2, 9, 11], [3, 11, 9], [4, 2, 0], [5, 0, 2], [6, 1, 3], [7, 3, 1],
|
|
[8, 6, 4], [9, 4, 6], [10, 5, 7], [11, 7, 5]]
|
|
|
|
# convert the tuples to Vectors
|
|
verts = [Vector(i) for i in v]
|
|
|
|
return verts, faces
|
|
|
|
|
|
# processes the raw data from source
|
|
|
|
def createSolid(plato, vtrunc, etrunc, dual, snub):
|
|
# the duals from each platonic solid
|
|
dualSource = {"4": "4",
|
|
"6": "8",
|
|
"8": "6",
|
|
"12": "20",
|
|
"20": "12"}
|
|
|
|
# constants saving space and readability
|
|
vtrunc *= 0.5
|
|
etrunc *= 0.5
|
|
supposedSize = 0
|
|
noSnub = (snub == "None") or (etrunc == 0.5) or (etrunc == 0)
|
|
lSnub = (snub == "Left") and (0 < etrunc < 0.5)
|
|
rSnub = (snub == "Right") and (0 < etrunc < 0.5)
|
|
|
|
# no truncation
|
|
if vtrunc == 0:
|
|
if dual: # dual is as simple as another, but mirrored platonic solid
|
|
vInput, fInput = source(dualSource[plato])
|
|
supposedSize = vSum(vInput[i] for i in fInput[0]).length / len(fInput[0])
|
|
vInput = [-i * supposedSize for i in vInput] # mirror it
|
|
return vInput, fInput
|
|
return source(plato)
|
|
elif 0 < vtrunc <= 0.5: # simple truncation of the source
|
|
vInput, fInput = source(plato)
|
|
else:
|
|
# truncation is now equal to simple truncation of the dual of the source
|
|
vInput, fInput = source(dualSource[plato])
|
|
supposedSize = vSum(vInput[i] for i in fInput[0]).length / len(fInput[0])
|
|
vtrunc = 1 - vtrunc # account for the source being a dual
|
|
if vtrunc == 0: # no truncation needed
|
|
if dual:
|
|
vInput, fInput = source(plato)
|
|
vInput = [i * supposedSize for i in vInput]
|
|
return vInput, fInput
|
|
vInput = [-i * supposedSize for i in vInput]
|
|
return vInput, fInput
|
|
|
|
# generate connection database
|
|
vDict = [{} for i in vInput]
|
|
# for every face, store what vertex comes after and before the current vertex
|
|
for x in range(len(fInput)):
|
|
i = fInput[x]
|
|
for j in range(len(i)):
|
|
vDict[i[j - 1]][i[j]] = [i[j - 2], x]
|
|
if len(vDict[i[j - 1]]) == 1:
|
|
vDict[i[j - 1]][-1] = i[j]
|
|
|
|
# the actual connection database: exists out of:
|
|
# [vtrunc pos, etrunc pos, connected vert IDs, connected face IDs]
|
|
vData = [[[], [], [], []] for i in vInput]
|
|
fvOutput = [] # faces created from truncated vertices
|
|
feOutput = [] # faces created from truncated edges
|
|
vOutput = [] # newly created vertices
|
|
for x in range(len(vInput)):
|
|
i = vDict[x] # lookup the current vertex
|
|
current = i[-1]
|
|
while True: # follow the chain to get a ccw order of connected verts and faces
|
|
vData[x][2].append(i[current][0])
|
|
vData[x][3].append(i[current][1])
|
|
# create truncated vertices
|
|
vData[x][0].append((1 - vtrunc) * vInput[x] + vtrunc * vInput[vData[x][2][-1]])
|
|
current = i[current][0]
|
|
if current == i[-1]:
|
|
break # if we're back at the first: stop the loop
|
|
fvOutput.append([]) # new face from truncated vert
|
|
fOffset = x * (len(i) - 1) # where to start off counting faceVerts
|
|
# only create one vert where one is needed (v1 todo: done)
|
|
if etrunc == 0.5:
|
|
for j in range(len(i) - 1):
|
|
vOutput.append((vData[x][0][j] + vData[x][0][j - 1]) * etrunc) # create vert
|
|
fvOutput[x].append(fOffset + j) # add to face
|
|
fvOutput[x] = fvOutput[x][1:] + [fvOutput[x][0]] # rotate face for ease later on
|
|
# create faces from truncated edges.
|
|
for j in range(len(i) - 1):
|
|
if x > vData[x][2][j]: # only create when other vertex has been added
|
|
index = vData[vData[x][2][j]][2].index(x)
|
|
feOutput.append([fvOutput[x][j], fvOutput[x][j - 1],
|
|
fvOutput[vData[x][2][j]][index],
|
|
fvOutput[vData[x][2][j]][index - 1]])
|
|
# edge truncation between none and full
|
|
elif etrunc > 0:
|
|
for j in range(len(i) - 1):
|
|
# create snubs from selecting verts from rectified meshes
|
|
if rSnub:
|
|
vOutput.append(etrunc * vData[x][0][j] + (1 - etrunc) * vData[x][0][j - 1])
|
|
fvOutput[x].append(fOffset + j)
|
|
elif lSnub:
|
|
vOutput.append((1 - etrunc) * vData[x][0][j] + etrunc * vData[x][0][j - 1])
|
|
fvOutput[x].append(fOffset + j)
|
|
else: # noSnub, select both verts from rectified mesh
|
|
vOutput.append(etrunc * vData[x][0][j] + (1 - etrunc) * vData[x][0][j - 1])
|
|
vOutput.append((1 - etrunc) * vData[x][0][j] + etrunc * vData[x][0][j - 1])
|
|
fvOutput[x].append(2 * fOffset + 2 * j)
|
|
fvOutput[x].append(2 * fOffset + 2 * j + 1)
|
|
# rotate face for ease later on
|
|
if noSnub:
|
|
fvOutput[x] = fvOutput[x][2:] + fvOutput[x][:2]
|
|
else:
|
|
fvOutput[x] = fvOutput[x][1:] + [fvOutput[x][0]]
|
|
# create single face for each edge
|
|
if noSnub:
|
|
for j in range(len(i) - 1):
|
|
if x > vData[x][2][j]:
|
|
index = vData[vData[x][2][j]][2].index(x)
|
|
feOutput.append([fvOutput[x][j * 2], fvOutput[x][2 * j - 1],
|
|
fvOutput[vData[x][2][j]][2 * index],
|
|
fvOutput[vData[x][2][j]][2 * index - 1]])
|
|
# create 2 tri's for each edge for the snubs
|
|
elif rSnub:
|
|
for j in range(len(i) - 1):
|
|
if x > vData[x][2][j]:
|
|
index = vData[vData[x][2][j]][2].index(x)
|
|
feOutput.append([fvOutput[x][j], fvOutput[x][j - 1],
|
|
fvOutput[vData[x][2][j]][index]])
|
|
feOutput.append([fvOutput[x][j], fvOutput[vData[x][2][j]][index],
|
|
fvOutput[vData[x][2][j]][index - 1]])
|
|
elif lSnub:
|
|
for j in range(len(i) - 1):
|
|
if x > vData[x][2][j]:
|
|
index = vData[vData[x][2][j]][2].index(x)
|
|
feOutput.append([fvOutput[x][j], fvOutput[x][j - 1],
|
|
fvOutput[vData[x][2][j]][index - 1]])
|
|
feOutput.append([fvOutput[x][j - 1], fvOutput[vData[x][2][j]][index],
|
|
fvOutput[vData[x][2][j]][index - 1]])
|
|
# special rules for birectified mesh (v1 todo: done)
|
|
elif vtrunc == 0.5:
|
|
for j in range(len(i) - 1):
|
|
if x < vData[x][2][j]: # use current vert, since other one has not passed yet
|
|
vOutput.append(vData[x][0][j])
|
|
fvOutput[x].append(len(vOutput) - 1)
|
|
else:
|
|
# search for other edge to avoid duplicity
|
|
connectee = vData[x][2][j]
|
|
fvOutput[x].append(fvOutput[connectee][vData[connectee][2].index(x)])
|
|
else: # vert truncation only
|
|
vOutput.extend(vData[x][0]) # use generated verts from way above
|
|
for j in range(len(i) - 1): # create face from them
|
|
fvOutput[x].append(fOffset + j)
|
|
|
|
# calculate supposed vertex length to ensure continuity
|
|
if supposedSize and not dual: # this to make the vtrunc > 1 work
|
|
supposedSize *= len(fvOutput[0]) / vSum(vOutput[i] for i in fvOutput[0]).length
|
|
vOutput = [-i * supposedSize for i in vOutput]
|
|
|
|
# create new faces by replacing old vert IDs by newly generated verts
|
|
ffOutput = [[] for i in fInput]
|
|
for x in range(len(fInput)):
|
|
# only one generated vert per vertex, so choose accordingly
|
|
if etrunc == 0.5 or (etrunc == 0 and vtrunc == 0.5) or lSnub or rSnub:
|
|
ffOutput[x] = [fvOutput[i][vData[i][3].index(x) - 1] for i in fInput[x]]
|
|
# two generated verts per vertex
|
|
elif etrunc > 0:
|
|
for i in fInput[x]:
|
|
ffOutput[x].append(fvOutput[i][2 * vData[i][3].index(x) - 1])
|
|
ffOutput[x].append(fvOutput[i][2 * vData[i][3].index(x) - 2])
|
|
else: # cutting off corners also makes 2 verts
|
|
for i in fInput[x]:
|
|
ffOutput[x].append(fvOutput[i][vData[i][3].index(x)])
|
|
ffOutput[x].append(fvOutput[i][vData[i][3].index(x) - 1])
|
|
|
|
if not dual:
|
|
return vOutput, fvOutput + feOutput + ffOutput
|
|
else:
|
|
# do the same procedure as above, only now on the generated mesh
|
|
# generate connection database
|
|
vDict = [{} for i in vOutput]
|
|
dvOutput = [0 for i in fvOutput + feOutput + ffOutput]
|
|
dfOutput = []
|
|
|
|
for x in range(len(dvOutput)): # for every face
|
|
i = (fvOutput + feOutput + ffOutput)[x] # choose face to work with
|
|
# find vertex from face
|
|
normal = (vOutput[i[0]] - vOutput[i[1]]).cross(vOutput[i[2]] - vOutput[i[1]]).normalized()
|
|
dvOutput[x] = normal / (normal.dot(vOutput[i[0]]))
|
|
for j in range(len(i)): # create vert chain
|
|
vDict[i[j - 1]][i[j]] = [i[j - 2], x]
|
|
if len(vDict[i[j - 1]]) == 1:
|
|
vDict[i[j - 1]][-1] = i[j]
|
|
|
|
# calculate supposed size for continuity
|
|
supposedSize = vSum([vInput[i] for i in fInput[0]]).length / len(fInput[0])
|
|
supposedSize /= dvOutput[-1].length
|
|
dvOutput = [i * supposedSize for i in dvOutput]
|
|
|
|
# use chains to create faces
|
|
for x in range(len(vOutput)):
|
|
i = vDict[x]
|
|
current = i[-1]
|
|
face = []
|
|
while True:
|
|
face.append(i[current][1])
|
|
current = i[current][0]
|
|
if current == i[-1]:
|
|
break
|
|
dfOutput.append(face)
|
|
|
|
return dvOutput, dfOutput
|
|
|
|
|
|
class Solids(bpy.types.Operator):
|
|
"""Add one of the (regular) solids (mesh)"""
|
|
bl_idname = "mesh.primitive_solid_add"
|
|
bl_label = "(Regular) solids"
|
|
bl_description = "Add one of the Platonic, Archimedean or Catalan solids"
|
|
bl_options = {'REGISTER', 'UNDO', 'PRESET'}
|
|
|
|
source: EnumProperty(
|
|
items=(("4", "Tetrahedron", ""),
|
|
("6", "Hexahedron", ""),
|
|
("8", "Octahedron", ""),
|
|
("12", "Dodecahedron", ""),
|
|
("20", "Icosahedron", "")),
|
|
name="Source",
|
|
description="Starting point of your solid"
|
|
)
|
|
size: FloatProperty(
|
|
name="Size",
|
|
description="Radius of the sphere through the vertices",
|
|
min=0.01,
|
|
soft_min=0.01,
|
|
max=100,
|
|
soft_max=100,
|
|
default=1.0
|
|
)
|
|
vTrunc: FloatProperty(
|
|
name="Vertex Truncation",
|
|
description="Amount of vertex truncation",
|
|
min=0.0,
|
|
soft_min=0.0,
|
|
max=2.0,
|
|
soft_max=2.0,
|
|
default=0.0,
|
|
precision=3,
|
|
step=0.5
|
|
)
|
|
eTrunc: FloatProperty(
|
|
name="Edge Truncation",
|
|
description="Amount of edge truncation",
|
|
min=0.0,
|
|
soft_min=0.0,
|
|
max=1.0,
|
|
soft_max=1.0,
|
|
default=0.0,
|
|
precision=3,
|
|
step=0.2
|
|
)
|
|
snub: EnumProperty(
|
|
items=(("None", "No Snub", ""),
|
|
("Left", "Left Snub", ""),
|
|
("Right", "Right Snub", "")),
|
|
name="Snub",
|
|
description="Create the snub version"
|
|
)
|
|
dual: BoolProperty(
|
|
name="Dual",
|
|
description="Create the dual of the current solid",
|
|
default=False
|
|
)
|
|
keepSize: BoolProperty(
|
|
name="Keep Size",
|
|
description="Keep the whole solid at a constant size",
|
|
default=False
|
|
)
|
|
preset: EnumProperty(
|
|
items=(("0", "Custom", ""),
|
|
("t4", "Truncated Tetrahedron", ""),
|
|
("r4", "Cuboctahedron", ""),
|
|
("t6", "Truncated Cube", ""),
|
|
("t8", "Truncated Octahedron", ""),
|
|
("b6", "Rhombicuboctahedron", ""),
|
|
("c6", "Truncated Cuboctahedron", ""),
|
|
("s6", "Snub Cube", ""),
|
|
("r12", "Icosidodecahedron", ""),
|
|
("t12", "Truncated Dodecahedron", ""),
|
|
("t20", "Truncated Icosahedron", ""),
|
|
("b12", "Rhombicosidodecahedron", ""),
|
|
("c12", "Truncated Icosidodecahedron", ""),
|
|
("s12", "Snub Dodecahedron", ""),
|
|
("dt4", "Triakis Tetrahedron", ""),
|
|
("dr4", "Rhombic Dodecahedron", ""),
|
|
("dt6", "Triakis Octahedron", ""),
|
|
("dt8", "Tetrakis Hexahedron", ""),
|
|
("db6", "Deltoidal Icositetrahedron", ""),
|
|
("dc6", "Disdyakis Dodecahedron", ""),
|
|
("ds6", "Pentagonal Icositetrahedron", ""),
|
|
("dr12", "Rhombic Triacontahedron", ""),
|
|
("dt12", "Triakis Icosahedron", ""),
|
|
("dt20", "Pentakis Dodecahedron", ""),
|
|
("db12", "Deltoidal Hexecontahedron", ""),
|
|
("dc12", "Disdyakis Triacontahedron", ""),
|
|
("ds12", "Pentagonal Hexecontahedron", "")),
|
|
name="Presets",
|
|
description="Parameters for some hard names"
|
|
)
|
|
|
|
# actual preset values
|
|
p = {"t4": ["4", 2 / 3, 0, 0, "None"],
|
|
"r4": ["4", 1, 1, 0, "None"],
|
|
"t6": ["6", 2 / 3, 0, 0, "None"],
|
|
"t8": ["8", 2 / 3, 0, 0, "None"],
|
|
"b6": ["6", 1.0938, 1, 0, "None"],
|
|
"c6": ["6", 1.0572, 0.585786, 0, "None"],
|
|
"s6": ["6", 1.0875, 0.704, 0, "Left"],
|
|
"r12": ["12", 1, 0, 0, "None"],
|
|
"t12": ["12", 2 / 3, 0, 0, "None"],
|
|
"t20": ["20", 2 / 3, 0, 0, "None"],
|
|
"b12": ["12", 1.1338, 1, 0, "None"],
|
|
"c12": ["20", 0.921, 0.553, 0, "None"],
|
|
"s12": ["12", 1.1235, 0.68, 0, "Left"],
|
|
"dt4": ["4", 2 / 3, 0, 1, "None"],
|
|
"dr4": ["4", 1, 1, 1, "None"],
|
|
"dt6": ["6", 2 / 3, 0, 1, "None"],
|
|
"dt8": ["8", 2 / 3, 0, 1, "None"],
|
|
"db6": ["6", 1.0938, 1, 1, "None"],
|
|
"dc6": ["6", 1.0572, 0.585786, 1, "None"],
|
|
"ds6": ["6", 1.0875, 0.704, 1, "Left"],
|
|
"dr12": ["12", 1, 0, 1, "None"],
|
|
"dt12": ["12", 2 / 3, 0, 1, "None"],
|
|
"dt20": ["20", 2 / 3, 0, 1, "None"],
|
|
"db12": ["12", 1.1338, 1, 1, "None"],
|
|
"dc12": ["20", 0.921, 0.553, 1, "None"],
|
|
"ds12": ["12", 1.1235, 0.68, 1, "Left"]}
|
|
|
|
# previous preset, for User-friendly reasons
|
|
previousSetting = ""
|
|
|
|
def execute(self, context):
|
|
# piece of code to make presets remain until parameters are changed
|
|
if self.preset != "0":
|
|
# if preset, set preset
|
|
if self.previousSetting != self.preset:
|
|
using = self.p[self.preset]
|
|
self.source = using[0]
|
|
self.vTrunc = using[1]
|
|
self.eTrunc = using[2]
|
|
self.dual = using[3]
|
|
self.snub = using[4]
|
|
else:
|
|
using = self.p[self.preset]
|
|
result0 = self.source == using[0]
|
|
result1 = abs(self.vTrunc - using[1]) < 0.004
|
|
result2 = abs(self.eTrunc - using[2]) < 0.0015
|
|
result4 = using[4] == self.snub or ((using[4] == "Left") and
|
|
self.snub in ["Left", "Right"])
|
|
if (result0 and result1 and result2 and result4):
|
|
if self.p[self.previousSetting][3] != self.dual:
|
|
if self.preset[0] == "d":
|
|
self.preset = self.preset[1:]
|
|
else:
|
|
self.preset = "d" + self.preset
|
|
else:
|
|
self.preset = "0"
|
|
|
|
self.previousSetting = self.preset
|
|
|
|
# generate mesh
|
|
verts, faces = createSolid(self.source,
|
|
self.vTrunc,
|
|
self.eTrunc,
|
|
self.dual,
|
|
self.snub
|
|
)
|
|
|
|
# turn n-gons in quads and tri's
|
|
faces = createPolys(faces)
|
|
|
|
# resize to normal size, or if keepSize, make sure all verts are of length 'size'
|
|
if self.keepSize:
|
|
rad = self.size / verts[-1 if self.dual else 0].length
|
|
else:
|
|
rad = self.size
|
|
verts = [i * rad for i in verts]
|
|
|
|
# generate object
|
|
# Create new mesh
|
|
mesh = bpy.data.meshes.new("Solid")
|
|
|
|
# Make a mesh from a list of verts/edges/faces.
|
|
mesh.from_pydata(verts, [], faces)
|
|
|
|
# Update mesh geometry after adding stuff.
|
|
mesh.update()
|
|
|
|
object_data_add(context, mesh, operator=None)
|
|
# object generation done
|
|
|
|
return {'FINISHED'}
|