Files
blender-addons/io_scene_3ds/import_3ds.py
Sebastian Sille 943968ad5b Import_3ds: Improved light animation import
Importing light color animation to shader nodes
2024-05-05 16:37:17 +02:00

1822 lines
83 KiB
Python

# SPDX-FileCopyrightText: 2005 Bob Holcomb
#
# SPDX-License-Identifier: GPL-2.0-or-later
import os
import bpy
import time
import math
import struct
import mathutils
from bpy_extras.image_utils import load_image
from bpy_extras.node_shader_utils import PrincipledBSDFWrapper
from pathlib import Path
BOUNDS_3DS = []
###################
# Data Structures #
###################
# Some of the chunks that we will see
# >----- Primary Chunk, at the beginning of each file
PRIMARY = 0x4D4D
# >----- Main Chunks
OBJECTINFO = 0x3D3D # This gives the version of the mesh and is found right before the material and object information
VERSION = 0x0002 # This gives the version of the .3ds file
EDITKEYFRAME = 0xB000 # This is the header for all of the key frame info
# >----- Data Chunks, used for various attributes
COLOR_F = 0x0010 # color defined as 3 floats
COLOR_24 = 0x0011 # color defined as 3 bytes
LIN_COLOR_24 = 0x0012 # linear byte color
LIN_COLOR_F = 0x0013 # linear float color
PCT_SHORT = 0x0030 # percentage short
PCT_FLOAT = 0x0031 # percentage float
MASTERSCALE = 0x0100 # Master scale factor
# >----- sub defines of OBJECTINFO
BITMAP = 0x1100 # The background image name
USE_BITMAP = 0x1101 # The background image flag
SOLIDBACKGND = 0x1200 # The background color (RGB)
USE_SOLIDBGND = 0x1201 # The background color flag
VGRADIENT = 0x1300 # The background gradient colors
USE_VGRADIENT = 0x1301 # The background gradient flag
O_CONSTS = 0x1500 # The origin of the 3D cursor
AMBIENTLIGHT = 0x2100 # The color of the ambient light
FOG = 0x2200 # The fog atmosphere settings
USE_FOG = 0x2201 # The fog atmosphere flag
FOG_BGND = 0x2210 # The fog atmosphere background flag
LAYER_FOG = 0x2302 # The fog layer atmosphere settings
USE_LAYER_FOG = 0x2303 # The fog layer atmosphere flag
MATERIAL = 0xAFFF # This stored the texture info
OBJECT = 0x4000 # This stores the faces, vertices, etc...
# >------ sub defines of MATERIAL
MAT_NAME = 0xA000 # This holds the material name
MAT_AMBIENT = 0xA010 # Ambient color of the object/material
MAT_DIFFUSE = 0xA020 # This holds the color of the object/material
MAT_SPECULAR = 0xA030 # Specular color of the object/material
MAT_SHINESS = 0xA040 # Roughness of the object/material (percent)
MAT_SHIN2 = 0xA041 # Shininess of the object/material (percent)
MAT_SHIN3 = 0xA042 # Reflection of the object/material (percent)
MAT_TRANSPARENCY = 0xA050 # Transparency value of material (percent)
MAT_XPFALL = 0xA052 # Transparency falloff value
MAT_REFBLUR = 0xA053 # Reflection blurring value
MAT_SELF_ILLUM = 0xA080 # # Material self illumination flag
MAT_TWO_SIDE = 0xA081 # Material is two sided flag
MAT_DECAL = 0xA082 # Material mapping is decaled flag
MAT_ADDITIVE = 0xA083 # Material has additive transparency flag
MAT_SELF_ILPCT = 0xA084 # Self illumination strength (percent)
MAT_WIRE = 0xA085 # Material wireframe rendered flag
MAT_FACEMAP = 0xA088 # Face mapped textures flag
MAT_PHONGSOFT = 0xA08C # Phong soften material flag
MAT_WIREABS = 0xA08E # Wire size in units flag
MAT_WIRESIZE = 0xA087 # Rendered wire size in pixels
MAT_SHADING = 0xA100 # Material shading method
MAT_USE_XPFALL = 0xA240 # Transparency falloff flag
MAT_USE_REFBLUR = 0xA250 # Reflection blurring flag
# >------ sub defines of MATERIAL_MAP
MAT_TEXTURE_MAP = 0xA200 # This is a header for a new texture map
MAT_SPECULAR_MAP = 0xA204 # This is a header for a new specular map
MAT_OPACITY_MAP = 0xA210 # This is a header for a new opacity map
MAT_REFLECTION_MAP = 0xA220 # This is a header for a new reflection map
MAT_BUMP_MAP = 0xA230 # This is a header for a new bump map
MAT_BUMP_PERCENT = 0xA252 # Normalmap strength (percent)
MAT_TEX2_MAP = 0xA33A # This is a header for a secondary texture
MAT_SHIN_MAP = 0xA33C # This is a header for a new roughness map
MAT_SELFI_MAP = 0xA33D # This is a header for a new emission map
MAT_MAP_FILEPATH = 0xA300 # This holds the file name of the texture
MAT_MAP_TILING = 0xA351 # 2nd bit (from LSB) is mirror UV flag
MAT_MAP_TEXBLUR = 0xA353 # Texture blurring factor (float 0-1)
MAT_MAP_USCALE = 0xA354 # U axis scaling
MAT_MAP_VSCALE = 0xA356 # V axis scaling
MAT_MAP_UOFFSET = 0xA358 # U axis offset
MAT_MAP_VOFFSET = 0xA35A # V axis offset
MAT_MAP_ANG = 0xA35C # UV rotation around the z-axis in rad
MAT_MAP_COL1 = 0xA360 # Map Color1
MAT_MAP_COL2 = 0xA362 # Map Color2
MAT_MAP_RCOL = 0xA364 # Red mapping
MAT_MAP_GCOL = 0xA366 # Green mapping
MAT_MAP_BCOL = 0xA368 # Blue mapping
# >------ sub defines of OBJECT
OBJECT_MESH = 0x4100 # This lets us know that we are reading a new object
OBJECT_LIGHT = 0x4600 # This lets us know we are reading a light object
OBJECT_CAMERA = 0x4700 # This lets us know we are reading a camera object
OBJECT_HIERARCHY = 0x4F00 # This lets us know the hierachy id of the object
OBJECT_PARENT = 0x4F10 # This lets us know the parent id of the object
# >------ Sub defines of LIGHT
LIGHT_SPOTLIGHT = 0x4610 # The target of a spotlight
LIGHT_OFF = 0x4620 # The light is off
LIGHT_ATTENUATE = 0x4625 # Light attenuate flag
LIGHT_RAYSHADE = 0x4627 # Light rayshading flag
LIGHT_SPOT_SHADOWED = 0x4630 # Light spot shadow flag
LIGHT_LOCAL_SHADOW = 0x4640 # Light shadow values 1
LIGHT_LOCAL_SHADOW2 = 0x4641 # Light shadow values 2
LIGHT_SPOT_SEE_CONE = 0x4650 # Light spot cone flag
LIGHT_SPOT_RECTANGLE = 0x4651 # Light spot rectangle flag
LIGHT_SPOT_OVERSHOOT = 0x4652 # Light spot overshoot flag
LIGHT_SPOT_PROJECTOR = 0x4653 # Light spot bitmap name
LIGHT_EXCLUDE = 0x4654 # Light excluded objects
LIGHT_RANGE = 0x4655 # Light range
LIGHT_SPOT_ROLL = 0x4656 # The roll angle of the spot
LIGHT_SPOT_ASPECT = 0x4657 # Light spot aspect flag
LIGHT_RAY_BIAS = 0x4658 # Light ray bias value
LIGHT_INNER_RANGE = 0x4659 # The light inner range
LIGHT_OUTER_RANGE = 0x465A # The light outer range
LIGHT_MULTIPLIER = 0x465B # The light energy factor
LIGHT_ATTENUATE = 0x4625 # Light attenuation flag
LIGHT_AMBIENT_LIGHT = 0x4680 # Light ambient flag
# >------ sub defines of CAMERA
OBJECT_CAM_RANGES = 0x4720 # The camera range values
# >------ sub defines of OBJECT_MESH
OBJECT_VERTICES = 0x4110 # The objects vertices
OBJECT_VERTFLAGS = 0x4111 # The objects vertex flags
OBJECT_FACES = 0x4120 # The objects faces
OBJECT_MATERIAL = 0x4130 # The objects face material
OBJECT_UV = 0x4140 # The vertex UV texture coordinates
OBJECT_SMOOTH = 0x4150 # The objects face smooth groups
OBJECT_TRANS_MATRIX = 0x4160 # The objects Matrix
# >------ sub defines of EDITKEYFRAME
KF_AMBIENT = 0xB001 # Keyframe ambient node
KF_OBJECT = 0xB002 # Keyframe object node
KF_OBJECT_CAMERA = 0xB003 # Keyframe camera node
KF_TARGET_CAMERA = 0xB004 # Keyframe target node
KF_OBJECT_LIGHT = 0xB005 # Keyframe light node
KF_TARGET_LIGHT = 0xB006 # Keyframe light target node
KF_OBJECT_SPOT_LIGHT = 0xB007 # Keyframe spotlight node
KFDATA_KFSEG = 0xB008 # Keyframe start and stop
KFDATA_CURTIME = 0xB009 # Keyframe current frame
KFDATA_KFHDR = 0xB00A # Keyframe node header
# >------ sub defines of KEYFRAME_NODE
OBJECT_NODE_HDR = 0xB010 # Keyframe object node header
OBJECT_INSTANCE_NAME = 0xB011 # Keyframe object name for dummy objects
OBJECT_PRESCALE = 0xB012 # Keyframe object prescale
OBJECT_PIVOT = 0xB013 # Keyframe object pivot position
OBJECT_BOUNDBOX = 0xB014 # Keyframe object boundbox
MORPH_SMOOTH = 0xB015 # Auto smooth angle for keyframe mesh objects
POS_TRACK_TAG = 0xB020 # Keyframe object position track
ROT_TRACK_TAG = 0xB021 # Keyframe object rotation track
SCL_TRACK_TAG = 0xB022 # Keyframe object scale track
FOV_TRACK_TAG = 0xB023 # Keyframe camera field of view track
ROLL_TRACK_TAG = 0xB024 # Keyframe camera roll track
COL_TRACK_TAG = 0xB025 # Keyframe light color track
MORPH_TRACK_TAG = 0xB026 # Keyframe object morph smooth track
HOTSPOT_TRACK_TAG = 0xB027 # Keyframe spotlight hotspot track
FALLOFF_TRACK_TAG = 0xB028 # Keyframe spotlight falloff track
HIDE_TRACK_TAG = 0xB029 # Keyframe object hide track
OBJECT_NODE_ID = 0xB030 # Keyframe object node id
PARENT_NAME = 0x80F0 # Object parent name tree (dot seperated)
ROOT_OBJECT = 0xFFFF
global scn
scn = None
object_dictionary = {}
parent_dictionary = {}
matrix_transform = {}
object_matrix = {}
class Chunk:
__slots__ = (
"ID",
"length",
"bytes_read",
)
# we don't read in the bytes_read, we compute that
binary_format = '<HI'
def __init__(self):
self.ID = 0
self.length = 0
self.bytes_read = 0
def dump(self):
print('ID: ', self.ID)
print('ID in hex: ', hex(self.ID))
print('length: ', self.length)
print('bytes_read: ', self.bytes_read)
def read_chunk(file, chunk):
temp_data = file.read(struct.calcsize(chunk.binary_format))
data = struct.unpack(chunk.binary_format, temp_data)
chunk.ID = data[0]
chunk.length = data[1]
# update the bytes read function
chunk.bytes_read = 6
# if debugging
# chunk.dump()
def read_string(file):
# read in the characters till we get a null character
s = []
while True:
c = file.read(1)
if c == b'\x00':
break
s.append(c)
# print('string: ', s)
# Remove the null character from the string
# print("read string", s)
return str(b''.join(s), "utf-8", "replace"), len(s) + 1
def skip_to_end(file, skip_chunk):
buffer_size = skip_chunk.length - skip_chunk.bytes_read
binary_format = '%ic' % buffer_size
file.read(struct.calcsize(binary_format))
skip_chunk.bytes_read += buffer_size
#############
# MATERIALS #
#############
def add_texture_to_material(image, contextWrapper, pct, extend, alpha, scale, offset, angle, tint1, tint2, mapto):
shader = contextWrapper.node_principled_bsdf
nodetree = contextWrapper.material.node_tree
shader.location = (-300, 0)
nodes = nodetree.nodes
links = nodetree.links
if mapto == 'COLOR':
mixer = nodes.new(type='ShaderNodeMixRGB')
mixer.label = "Mixer"
mixer.inputs[0].default_value = pct / 100
mixer.inputs[1].default_value = (
tint1[:3] + [1] if tint1 else shader.inputs['Base Color'].default_value[:])
contextWrapper._grid_to_location(1, 2, dst_node=mixer, ref_node=shader)
img_wrap = contextWrapper.base_color_texture
image.alpha_mode = 'CHANNEL_PACKED'
links.new(mixer.outputs['Color'], shader.inputs['Base Color'])
if tint2 is not None:
img_wrap.colorspace_name = 'Non-Color'
mixer.inputs[2].default_value = tint2[:3] + [1]
links.new(img_wrap.node_image.outputs['Color'], mixer.inputs[0])
else:
links.new(img_wrap.node_image.outputs['Color'], mixer.inputs[2])
elif mapto == 'ROUGHNESS':
img_wrap = contextWrapper.roughness_texture
elif mapto == 'METALLIC':
shader.location = (300,300)
img_wrap = contextWrapper.metallic_texture
elif mapto == 'SPECULARITY':
shader.location = (300,0)
img_wrap = contextWrapper.specular_tint_texture
if tint1:
img_wrap.node_dst.inputs['Coat Tint'].default_value = tint1[:3] + [1]
if tint2:
img_wrap.node_dst.inputs['Sheen Tint'].default_value = tint2[:3] + [1]
elif mapto == 'ALPHA':
shader.location = (-300,0)
img_wrap = contextWrapper.alpha_texture
img_wrap.use_alpha = False
links.new(img_wrap.node_image.outputs['Color'], img_wrap.socket_dst)
elif mapto == 'EMISSION':
shader.location = (0,-900)
img_wrap = contextWrapper.emission_color_texture
elif mapto == 'NORMAL':
shader.location = (300, 300)
img_wrap = contextWrapper.normalmap_texture
elif mapto == 'TEXTURE':
img_wrap = nodes.new(type='ShaderNodeTexImage')
img_wrap.label = image.name
contextWrapper._grid_to_location(0, 2, dst_node=img_wrap, ref_node=shader)
for node in nodes:
if node.label == 'Mixer':
spare = node.inputs[1] if node.inputs[1].is_linked is False else node.inputs[2]
socket = spare if spare.is_linked is False else node.inputs[0]
links.new(img_wrap.outputs['Color'], socket)
if node.type == 'TEX_COORD':
links.new(node.outputs['UV'], img_wrap.inputs['Vector'])
if shader.inputs['Base Color'].is_linked is False:
links.new(img_wrap.outputs['Color'], shader.inputs['Base Color'])
img_wrap.image = image
img_wrap.extension = 'REPEAT'
if mapto != 'TEXTURE':
img_wrap.scale = scale
img_wrap.translation = offset
img_wrap.rotation[2] = angle
if extend == 'mirror':
img_wrap.extension = 'MIRROR'
elif extend == 'decal':
img_wrap.extension = 'EXTEND'
elif extend == 'noWrap':
img_wrap.extension = 'CLIP'
if alpha == 'alpha':
own_node = img_wrap.node_image
contextWrapper.material.blend_method = 'HASHED'
links.new(own_node.outputs['Alpha'], img_wrap.socket_dst)
for link in links:
if link.from_node.type == 'TEX_IMAGE' and link.to_node.type == 'MIX_RGB':
tex = link.from_node.image.name
own_map = img_wrap.node_mapping
if tex == image.name:
links.new(link.from_node.outputs['Alpha'], img_wrap.socket_dst)
try:
nodes.remove(own_map)
nodes.remove(own_node)
except:
pass
for imgs in bpy.data.images:
if imgs.name[-3:].isdigit():
if not imgs.users:
bpy.data.images.remove(imgs)
shader.location = (300, 300)
contextWrapper._grid_to_location(1, 0, dst_node=contextWrapper.node_out, ref_node=shader)
#############
# MESH DATA #
#############
childs_list = []
parent_list = []
def process_next_chunk(context, file, previous_chunk, imported_objects,
CONSTRAIN, FILTER, IMAGE_SEARCH, WORLD_MATRIX,
KEYFRAME, APPLY_MATRIX, CONVERSE, MEASURE, CURSOR):
contextObName = None
contextWorld = None
contextLamp = None
contextCamera = None
contextMaterial = None
contextAlpha = None
contextColor = None
contextWrapper = None
contextMatrix = None
contextReflection = None
contextTransmission = None
contextMesh_vertls = None
contextMesh_facels = None
contextMesh_flag = None
contextMeshMaterials = []
contextMesh_smooth = None
contextMeshUV = None
contextTrack_flag = False
# TEXTURE_DICT = {}
MATDICT = {}
# Localspace variable names, faster.
SZ_FLOAT = struct.calcsize('f')
SZ_2FLOAT = struct.calcsize('2f')
SZ_3FLOAT = struct.calcsize('3f')
SZ_4FLOAT = struct.calcsize('4f')
SZ_U_INT = struct.calcsize('I')
SZ_U_SHORT = struct.calcsize('H')
SZ_4U_SHORT = struct.calcsize('4H')
SZ_4x3MAT = struct.calcsize('ffffffffffff')
object_dict = {} # object identities
object_list = [] # for hierarchy
object_parent = [] # index of parent in hierarchy, 0xFFFF = no parent
pivot_list = [] # pivots with hierarchy handling
trackposition = {} # keep track to position for target calculation
def putContextMesh(context, ContextMesh_vertls, ContextMesh_facels, ContextMesh_flag,
ContextMeshMaterials, ContextMesh_smooth, WORLD_MATRIX):
bmesh = bpy.data.meshes.new(contextObName)
if ContextMesh_facels is None:
ContextMesh_facels = []
if ContextMesh_vertls:
bmesh.vertices.add(len(ContextMesh_vertls) // 3)
bmesh.vertices.foreach_set("co", ContextMesh_vertls)
nbr_faces = len(ContextMesh_facels)
bmesh.polygons.add(nbr_faces)
bmesh.loops.add(nbr_faces * 3)
eekadoodle_faces = []
for v1, v2, v3 in ContextMesh_facels:
eekadoodle_faces.extend((v3, v1, v2) if v3 == 0 else (v1, v2, v3))
bmesh.polygons.foreach_set("loop_start", range(0, nbr_faces * 3, 3))
bmesh.loops.foreach_set("vertex_index", eekadoodle_faces)
if bmesh.polygons and contextMeshUV:
bmesh.uv_layers.new()
uv_faces = bmesh.uv_layers.active.data[:]
else:
uv_faces = None
for mat_idx, (matName, faces) in enumerate(ContextMeshMaterials):
if matName is None:
bmat = None
else:
bmat = MATDICT.get(matName)
# in rare cases no materials defined.
bmesh.materials.append(bmat) # can be None
if bmesh.polygons:
for fidx in faces:
bmesh.polygons[fidx].material_index = mat_idx
else:
print("\tError: Mesh has no faces!")
if uv_faces:
uvl = bmesh.uv_layers.active.data[:]
for fidx, pl in enumerate(bmesh.polygons):
face = ContextMesh_facels[fidx]
v1, v2, v3 = face
# eekadoodle
if v3 == 0:
v1, v2, v3 = v3, v1, v2
uvl[pl.loop_start].uv = contextMeshUV[v1 * 2: (v1 * 2) + 2]
uvl[pl.loop_start + 1].uv = contextMeshUV[v2 * 2: (v2 * 2) + 2]
uvl[pl.loop_start + 2].uv = contextMeshUV[v3 * 2: (v3 * 2) + 2]
# always a tri
bmesh.validate()
bmesh.update()
ob = bpy.data.objects.new(contextObName, bmesh)
object_dictionary[contextObName] = ob
context.view_layer.active_layer_collection.collection.objects.link(ob)
imported_objects.append(ob)
if ContextMesh_flag:
"""Bit 0 (0x1) sets edge CA visible, Bit 1 (0x2) sets edge BC visible and
Bit 2 (0x4) sets edge AB visible. In Blender we use sharp edges for those flags."""
for f, pl in enumerate(bmesh.polygons):
face = ContextMesh_facels[f]
faceflag = ContextMesh_flag[f]
edge_ab = bmesh.edges[bmesh.loops[pl.loop_start].edge_index]
edge_bc = bmesh.edges[bmesh.loops[pl.loop_start + 1].edge_index]
edge_ca = bmesh.edges[bmesh.loops[pl.loop_start + 2].edge_index]
if face[2] == 0:
edge_ab, edge_bc, edge_ca = edge_ca, edge_ab, edge_bc
if faceflag & 0x1:
edge_ca.use_edge_sharp = True
if faceflag & 0x2:
edge_bc.use_edge_sharp = True
if faceflag & 0x4:
edge_ab.use_edge_sharp = True
if ContextMesh_smooth:
for f, pl in enumerate(bmesh.polygons):
smoothface = ContextMesh_smooth[f]
bmesh.polygons[f].use_smooth = True if smoothface > 0 else False
else:
bmesh.polygons.foreach_set("use_smooth", [False] * len(bmesh.polygons))
if contextMatrix:
if WORLD_MATRIX:
ob.matrix_world = contextMatrix
else:
ob.matrix_local = contextMatrix
object_matrix[ob] = contextMatrix.copy()
# a spare chunk
new_chunk = Chunk()
temp_chunk = Chunk()
CreateBlenderObject = False
CreateCameraObject = False
CreateLightObject = False
CreateTrackData = False
CreateWorld = 'WORLD' in FILTER
CreateMesh = 'MESH' in FILTER
CreateLight = 'LIGHT' in FILTER
CreateCamera = 'CAMERA' in FILTER
CreateEmpty = 'EMPTY' in FILTER
def read_short(temp_chunk):
temp_data = file.read(SZ_U_SHORT)
temp_chunk.bytes_read += SZ_U_SHORT
return struct.unpack('<H', temp_data)[0]
def read_long(temp_chunk):
temp_data = file.read(SZ_U_INT)
temp_chunk.bytes_read += SZ_U_INT
return struct.unpack('<I', temp_data)[0]
def read_float(temp_chunk):
temp_data = file.read(SZ_FLOAT)
temp_chunk.bytes_read += SZ_FLOAT
return struct.unpack('<f', temp_data)[0]
def read_float_array(temp_chunk):
temp_data = file.read(SZ_3FLOAT)
temp_chunk.bytes_read += SZ_3FLOAT
return [float(val) for val in struct.unpack('<3f', temp_data)]
def read_byte_color(temp_chunk):
temp_data = file.read(struct.calcsize('3B'))
temp_chunk.bytes_read += 3
return [float(col) / 255 for col in struct.unpack('<3B', temp_data)]
def read_texture(new_chunk, temp_chunk, name, mapto):
uscale, vscale, uoffset, voffset, angle = 1.0, 1.0, 0.0, 0.0, 0.0
contextWrapper.use_nodes = True
tint1 = tint2 = None
extend = 'wrap'
alpha = False
pct = 70
contextWrapper.base_color = contextColor[:]
contextWrapper.metallic = contextMaterial.metallic
contextWrapper.roughness = contextMaterial.roughness
contextWrapper.transmission = contextTransmission
contextWrapper.specular = contextMaterial.specular_intensity
contextWrapper.specular_tint = contextMaterial.specular_color[:]
contextWrapper.emission_color = contextMaterial.line_color[:3]
contextWrapper.emission_strength = contextMaterial.line_priority / 100
contextWrapper.alpha = contextMaterial.diffuse_color[3] = contextAlpha
contextWrapper.node_principled_bsdf.inputs['Coat Weight'].default_value = contextReflection
while (new_chunk.bytes_read < new_chunk.length):
read_chunk(file, temp_chunk)
if temp_chunk.ID == PCT_SHORT:
pct = read_short(temp_chunk)
elif temp_chunk.ID == MAT_MAP_FILEPATH:
texture_name, read_str_len = read_string(file)
img = load_image(texture_name, dirname, place_holder=False, recursive=IMAGE_SEARCH, check_existing=True)
temp_chunk.bytes_read += read_str_len # plus one for the null character that gets removed
elif temp_chunk.ID == MAT_BUMP_PERCENT:
contextWrapper.normalmap_strength = (float(read_short(temp_chunk) / 100))
elif mapto in {'COLOR', 'SPECULARITY'} and temp_chunk.ID == MAT_MAP_TEXBLUR:
contextWrapper.node_principled_bsdf.inputs['Sheen Weight'].default_value = float(read_float(temp_chunk))
elif temp_chunk.ID == MAT_MAP_TILING:
"""Control bit flags, 0x1 activates decaling, 0x2 activates mirror, 0x8 activates inversion,
0x10 deactivates tiling, 0x20 activates summed area sampling, 0x40 activates alpha source,
0x80 activates tinting, 0x100 ignores alpha, 0x200 activates RGB tint. Bits 0x80, 0x100, and 0x200
are only used with TEXMAP, TEX2MAP, and SPECMAP chunks. 0x40, when used with a TEXMAP, TEX2MAP, or SPECMAP chunk
must be accompanied with a tint bit, either 0x100 or 0x200, tintcolor will be processed if colorchunks are present."""
tiling = read_short(temp_chunk)
if tiling & 0x1:
extend = 'decal'
elif tiling & 0x2:
extend = 'mirror'
elif tiling & 0x8:
extend = 'invert'
elif tiling & 0x10:
extend = 'noWrap'
if tiling & 0x20:
alpha = 'sat'
if tiling & 0x40:
alpha = 'alpha'
if tiling & 0x80:
tint = 'tint'
if tiling & 0x100:
tint = 'noAlpha'
if tiling & 0x200:
tint = 'RGBtint'
elif temp_chunk.ID == MAT_MAP_USCALE:
uscale = read_float(temp_chunk)
elif temp_chunk.ID == MAT_MAP_VSCALE:
vscale = read_float(temp_chunk)
elif temp_chunk.ID == MAT_MAP_UOFFSET:
uoffset = read_float(temp_chunk)
elif temp_chunk.ID == MAT_MAP_VOFFSET:
voffset = read_float(temp_chunk)
elif temp_chunk.ID == MAT_MAP_ANG:
angle = read_float(temp_chunk)
elif temp_chunk.ID == MAT_MAP_COL1:
tint1 = read_byte_color(temp_chunk)
elif temp_chunk.ID == MAT_MAP_COL2:
tint2 = read_byte_color(temp_chunk)
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
# add the map to the material in the right channel
if img:
add_texture_to_material(img, contextWrapper, pct, extend, alpha, (uscale, vscale, 1),
(uoffset, voffset, 0), angle, tint1, tint2, mapto)
def apply_constrain(vec):
convector = mathutils.Vector.Fill(3, (CONSTRAIN * 0.1))
consize = mathutils.Vector(vec) * convector if CONSTRAIN != 0.0 else mathutils.Vector(vec)
return consize
def get_hierarchy(tree_chunk):
child_id = read_short(tree_chunk)
childs_list.insert(child_id, contextObName)
parent_list.insert(child_id, None)
if child_id in parent_list:
idp = parent_list.index(child_id)
parent_list[idp] = contextObName
return child_id
def get_parent(tree_chunk, child_id=-1):
parent_id = read_short(tree_chunk)
if parent_id > len(childs_list):
parent_list[child_id] = parent_id
parent_list.extend([None] * (parent_id - len(parent_list)))
parent_list.insert(parent_id, contextObName)
elif parent_id < len(childs_list):
parent_list[child_id] = childs_list[parent_id]
def calc_target(loca, target):
pan = tilt = 0.0
plane = loca + target
angle = math.radians(90) # Target triangulation
check_sign = abs(loca.y) < abs(target.y)
check_axes = abs(loca.x - target.x) > abs(loca.y - target.y)
plane_y = plane.y if check_sign else -1 * plane.y
sign_xy = plane.x if check_axes else plane.y
axis_xy = plane_y if check_axes else plane.x
hyp = math.sqrt(pow(plane.x,2) + pow(plane.y,2))
dia = math.sqrt(pow(hyp,2) + pow(plane.z,2))
yaw = math.atan2(math.copysign(hyp, sign_xy), axis_xy)
bow = math.acos(hyp / dia) if dia != 0 else 0
turn = angle - yaw if check_sign else angle + yaw
tilt = angle - bow if loca.z > target.z else angle + bow
pan = yaw if check_axes else turn
return tilt, pan
def read_track_data(track_chunk):
"""Trackflags 0x1, 0x2 and 0x3 are for looping. 0x8, 0x10 and 0x20
locks the XYZ axes. 0x100, 0x200 and 0x400 unlinks the XYZ axes."""
tflags = read_short(track_chunk)
contextTrack_flag = tflags
temp_data = file.read(SZ_U_INT * 2)
track_chunk.bytes_read += SZ_U_INT * 2
nkeys = read_long(track_chunk)
for i in range(nkeys):
nframe = read_long(track_chunk)
nflags = read_short(track_chunk)
for f in range(bin(nflags).count('1')):
temp_data = file.read(SZ_FLOAT) # Check for spline terms
track_chunk.bytes_read += SZ_FLOAT
trackdata = read_float_array(track_chunk)
keyframe_data[nframe] = trackdata
return keyframe_data
def read_track_angle(track_chunk):
temp_data = file.read(SZ_U_SHORT * 5)
track_chunk.bytes_read += SZ_U_SHORT * 5
nkeys = read_long(track_chunk)
for i in range(nkeys):
nframe = read_long(track_chunk)
nflags = read_short(track_chunk)
for f in range(bin(nflags).count('1')):
temp_data = file.read(SZ_FLOAT) # Check for spline terms
track_chunk.bytes_read += SZ_FLOAT
angle = read_float(track_chunk)
keyframe_angle[nframe] = math.radians(angle)
return keyframe_angle
dirname = os.path.dirname(file.name)
# loop through all the data for this chunk (previous chunk) and see what it is
while (previous_chunk.bytes_read < previous_chunk.length):
read_chunk(file, new_chunk)
# Check the Version chunk
if new_chunk.ID == VERSION:
# read in the version of the file
temp_data = file.read(SZ_U_INT)
version = struct.unpack('<I', temp_data)[0]
new_chunk.bytes_read += 4 # read the 4 bytes for the version number
# this loader works with version 3 and below, but may not with 4 and above
if version > 3:
print("\tNon-Fatal Error: Version greater than 3, may not load correctly: ", version)
# The main object info chunk
elif new_chunk.ID == OBJECTINFO:
process_next_chunk(context, file, new_chunk, imported_objects,
CONSTRAIN, FILTER, IMAGE_SEARCH, WORLD_MATRIX,
KEYFRAME, APPLY_MATRIX, CONVERSE, MEASURE, CURSOR)
# keep track of how much we read in the main chunk
new_chunk.bytes_read += temp_chunk.bytes_read
# If cursor location
elif CURSOR and new_chunk.ID == O_CONSTS:
context.scene.cursor.location = read_float_array(new_chunk)
# If ambient light chunk
elif CreateWorld and new_chunk.ID == AMBIENTLIGHT:
path, filename = os.path.split(file.name)
realname, ext = os.path.splitext(filename)
contextWorld = bpy.data.worlds.new("Ambient: " + realname)
context.scene.world = contextWorld
read_chunk(file, temp_chunk)
if temp_chunk.ID == COLOR_F:
contextWorld.color[:] = read_float_array(temp_chunk)
elif temp_chunk.ID == LIN_COLOR_F:
contextWorld.color[:] = read_float_array(temp_chunk)
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
# If background chunk
elif CreateWorld and new_chunk.ID == SOLIDBACKGND:
backgroundcolor = mathutils.Color((0.1, 0.1, 0.1))
if contextWorld is None:
path, filename = os.path.split(file.name)
realname, ext = os.path.splitext(filename)
contextWorld = bpy.data.worlds.new("Background: " + realname)
context.scene.world = contextWorld
contextWorld.use_nodes = True
worldnodes = contextWorld.node_tree.nodes
backgroundnode = worldnodes['Background']
read_chunk(file, temp_chunk)
if temp_chunk.ID == COLOR_F:
backgroundcolor = read_float_array(temp_chunk)
elif temp_chunk.ID == LIN_COLOR_F:
backgroundcolor = read_float_array(temp_chunk)
else:
skip_to_end(file, temp_chunk)
backgroundmix = next((wn for wn in worldnodes if wn.type in {'MIX', 'MIX_RGB'}), False)
backgroundnode.inputs[0].default_value[:3] = backgroundcolor
if backgroundmix:
backgroundmix.inputs[2].default_value[:3] = backgroundcolor
new_chunk.bytes_read += temp_chunk.bytes_read
# If bitmap chunk
elif CreateWorld and new_chunk.ID == BITMAP:
bitmap_name, read_str_len = read_string(file)
if contextWorld is None:
path, filename = os.path.split(file.name)
realname, ext = os.path.splitext(filename)
contextWorld = bpy.data.worlds.new("Bitmap: " + realname)
context.scene.world = contextWorld
contextWorld.use_nodes = True
links = contextWorld.node_tree.links
nodes = contextWorld.node_tree.nodes
bitmap_mix = nodes.new(type='ShaderNodeMixRGB')
bitmapnode = nodes.new(type='ShaderNodeTexEnvironment')
bitmap_mix.label = "Solid Color"
bitmapnode.label = "Bitmap: " + bitmap_name
bitmap_mix.inputs[2].default_value = nodes['Background'].inputs[0].default_value
bitmapnode.image = load_image(bitmap_name, dirname, place_holder=False, recursive=IMAGE_SEARCH, check_existing=True)
bitmap_mix.inputs[0].default_value = 0.5 if bitmapnode.image is not None else 1.0
bitmapnode.location = (-600, 360) if bitmapnode.image is not None else (-600, 300)
bitmap_mix.location = (-250, 300)
gradientnode = next((wn for wn in nodes if wn.type == 'VALTORGB'), False)
links.new(bitmap_mix.outputs['Color'], nodes['Background'].inputs[0])
links.new(bitmapnode.outputs['Color'], bitmap_mix.inputs[1])
if gradientnode:
links.new(bitmapnode.outputs['Color'], gradientnode.inputs[0])
new_chunk.bytes_read += read_str_len
# If gradient chunk:
elif CreateWorld and new_chunk.ID == VGRADIENT:
if contextWorld is None:
path, filename = os.path.split(file.name)
realname, ext = os.path.splitext(filename)
contextWorld = bpy.data.worlds.new("Gradient: " + realname)
context.scene.world = contextWorld
contextWorld.use_nodes = True
links = contextWorld.node_tree.links
nodes = contextWorld.node_tree.nodes
gradientnode = nodes.new(type='ShaderNodeValToRGB')
gradientnode.location = (-600, 100)
gradientnode.label = "Gradient"
backgroundmix = next((wn for wn in worldnodes if wn.type in {'MIX', 'MIX_RGB'}), False)
bitmapnode = next((wn for wn in nodes if wn.type in {'TEX_IMAGE', 'TEX_ENVIRONMENT'}), False)
if backgroundmix:
links.new(gradientnode.outputs['Color'], backgroundmix.inputs[2])
else:
links.new(gradientnode.outputs['Color'], nodes['Background'].inputs[0])
if bitmapnode:
links.new(bitmapnode.outputs['Color'], gradientnode.inputs[0])
gradientnode.color_ramp.elements.new(read_float(new_chunk))
read_chunk(file, temp_chunk)
if temp_chunk.ID == COLOR_F:
gradientnode.color_ramp.elements[2].color[:3] = read_float_array(temp_chunk)
elif temp_chunk.ID == LIN_COLOR_F:
gradientnode.color_ramp.elements[2].color[:3] = read_float_array(temp_chunk)
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
read_chunk(file, temp_chunk)
if temp_chunk.ID == COLOR_F:
gradientnode.color_ramp.elements[1].color[:3] = read_float_array(temp_chunk)
elif temp_chunk.ID == LIN_COLOR_F:
gradientnode.color_ramp.elements[1].color[:3] = read_float_array(temp_chunk)
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
read_chunk(file, temp_chunk)
if temp_chunk.ID == COLOR_F:
gradientnode.color_ramp.elements[0].color[:3] = read_float_array(temp_chunk)
elif temp_chunk.ID == LIN_COLOR_F:
gradientnode.color_ramp.elements[0].color[:3] = read_float_array(temp_chunk)
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
# If fog chunk:
elif CreateWorld and new_chunk.ID == FOG:
if contextWorld is None:
path, filename = os.path.split(file.name)
realname, ext = os.path.splitext(filename)
contextWorld = bpy.data.worlds.new("Fog: " + realname)
context.scene.world = contextWorld
contextWorld.use_nodes = True
links = contextWorld.node_tree.links
nodes = contextWorld.node_tree.nodes
fognode = nodes.new(type='ShaderNodeVolumeAbsorption')
fognode.label = "Fog"
fognode.location = (10, 60)
volumemix = next((wn for wn in worldnodes if wn.label == 'Volume' and wn.type in {'ADD_SHADER', 'MIX_SHADER'}), False)
if volumemix:
links.new(fognode.outputs['Volume'], volumemix.inputs[1])
else:
links.new(fognode.outputs[0], nodes['World Output'].inputs[1])
contextWorld.mist_settings.use_mist = True
contextWorld.mist_settings.start = read_float(new_chunk)
nearfog = read_float(new_chunk) * 0.01
contextWorld.mist_settings.depth = read_float(new_chunk)
farfog = read_float(new_chunk) * 0.01
fognode.inputs[1].default_value = (nearfog + farfog) * 0.5
read_chunk(file, temp_chunk)
if temp_chunk.ID == COLOR_F:
fognode.inputs[0].default_value[:3] = read_float_array(temp_chunk)
elif temp_chunk.ID == LIN_COLOR_F:
fognode.inputs[0].default_value[:3] = read_float_array(temp_chunk)
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
elif CreateWorld and new_chunk.ID == FOG_BGND:
pass
# If layer fog chunk:
elif CreateWorld and new_chunk.ID == LAYER_FOG:
"""Fog options flags are bit 20 (0x100000) for background fogging,
bit 0 (0x1) for bottom falloff, and bit 1 (0x2) for top falloff."""
if contextWorld is None:
path, filename = os.path.split(file.name)
realname, ext = os.path.splitext(filename)
contextWorld = bpy.data.worlds.new("LayerFog: " + realname)
context.scene.world = contextWorld
contextWorld.use_nodes = True
links = contextWorld.node_tree.links
nodes = contextWorld.node_tree.nodes
mxvolume = nodes.new(type='ShaderNodeMixShader')
layerfog = nodes.new(type='ShaderNodeVolumeScatter')
layerfog.label = "Layer Fog"
mxvolume.label = "Volume"
layerfog.location = (10, -60)
mxvolume.location = (300, 50)
nodes['World Output'].location = (600, 200)
links.new(layerfog.outputs['Volume'], mxvolume.inputs[2])
links.new(mxvolume.outputs[0], nodes['World Output'].inputs[1])
fognode = next((wn for wn in worldnodes if wn.type == 'VOLUME_ABSORPTION'), False)
if fognode:
links.new(fognode.outputs['Volume'], mxvolume.inputs[1])
context.view_layer.use_pass_mist = False
contextWorld.mist_settings.use_mist = True
contextWorld.mist_settings.start = read_float(new_chunk)
contextWorld.mist_settings.height = read_float(new_chunk)
layerfog.inputs[1].default_value = read_float(new_chunk)
layerfog_flag = read_long(new_chunk)
if layerfog_flag == 0:
contextWorld.mist_settings.falloff = 'LINEAR'
if layerfog_flag & 0x1:
contextWorld.mist_settings.falloff = 'QUADRATIC'
if layerfog_flag & 0x2:
contextWorld.mist_settings.falloff = 'INVERSE_QUADRATIC'
read_chunk(file, temp_chunk)
if temp_chunk.ID == COLOR_F:
layerfog.inputs[0].default_value[:3] = read_float_array(temp_chunk)
elif temp_chunk.ID == LIN_COLOR_F:
layerfog.inputs[0].default_value[:3] = read_float_array(temp_chunk)
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
elif CreateWorld and new_chunk.ID in {USE_FOG, USE_LAYER_FOG}:
context.view_layer.use_pass_mist = True
# If material chunk
elif new_chunk.ID == MATERIAL:
contextAlpha = True
contextReflection = False
contextTransmission = False
contextColor = mathutils.Color((0.8, 0.8, 0.8))
contextMaterial = bpy.data.materials.new('Material')
contextWrapper = PrincipledBSDFWrapper(contextMaterial, is_readonly=False, use_nodes=False)
elif new_chunk.ID == MAT_NAME:
material_name, read_str_len = read_string(file)
# plus one for the null character that ended the string
new_chunk.bytes_read += read_str_len
contextMaterial.name = material_name.rstrip() # remove trailing whitespace
MATDICT[material_name] = contextMaterial
elif new_chunk.ID == MAT_AMBIENT:
read_chunk(file, temp_chunk)
# to not loose this data, ambient color is stored in line color
if temp_chunk.ID == COLOR_F:
contextMaterial.line_color[:3] = read_float_array(temp_chunk)
elif temp_chunk.ID == COLOR_24:
contextMaterial.line_color[:3] = read_byte_color(temp_chunk)
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
elif new_chunk.ID == MAT_DIFFUSE:
read_chunk(file, temp_chunk)
if temp_chunk.ID == COLOR_F:
contextColor = mathutils.Color(read_float_array(temp_chunk))
contextMaterial.diffuse_color[:3] = contextColor
elif temp_chunk.ID == COLOR_24:
contextColor = mathutils.Color(read_byte_color(temp_chunk))
contextMaterial.diffuse_color[:3] = contextColor
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
elif new_chunk.ID == MAT_SPECULAR:
read_chunk(file, temp_chunk)
if temp_chunk.ID == COLOR_F:
contextMaterial.specular_color = read_float_array(temp_chunk)
elif temp_chunk.ID == COLOR_24:
contextMaterial.specular_color = read_byte_color(temp_chunk)
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
elif new_chunk.ID == MAT_SHINESS:
read_chunk(file, temp_chunk)
if temp_chunk.ID == PCT_SHORT:
contextMaterial.roughness = 1 - (float(read_short(temp_chunk) / 100))
elif temp_chunk.ID == PCT_FLOAT:
contextMaterial.roughness = 1.0 - float(read_float(temp_chunk))
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
elif new_chunk.ID == MAT_SHIN2:
read_chunk(file, temp_chunk)
if temp_chunk.ID == PCT_SHORT:
contextMaterial.specular_intensity = float(read_short(temp_chunk) / 100)
elif temp_chunk.ID == PCT_FLOAT:
contextMaterial.specular_intensity = float(read_float(temp_chunk))
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
elif new_chunk.ID == MAT_SHIN3:
read_chunk(file, temp_chunk)
if temp_chunk.ID == PCT_SHORT:
contextMaterial.metallic = float(read_short(temp_chunk) / 100)
elif temp_chunk.ID == PCT_FLOAT:
contextMaterial.metallic = float(read_float(temp_chunk))
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
elif new_chunk.ID == MAT_TRANSPARENCY:
read_chunk(file, temp_chunk)
if temp_chunk.ID == PCT_SHORT:
contextAlpha = 1 - (float(read_short(temp_chunk) / 100))
contextMaterial.diffuse_color[3] = contextAlpha
elif temp_chunk.ID == PCT_FLOAT:
contextAlpha = 1.0 - float(read_float(temp_chunk))
contextMaterial.diffuse_color[3] = contextAlpha
else:
skip_to_end(file, temp_chunk)
if contextAlpha < 1:
contextMaterial.blend_method = 'BLEND'
new_chunk.bytes_read += temp_chunk.bytes_read
elif new_chunk.ID == MAT_XPFALL:
read_chunk(file, temp_chunk)
if temp_chunk.ID == PCT_SHORT:
contextTransmission = float(abs(read_short(temp_chunk) / 100))
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
elif new_chunk.ID == MAT_REFBLUR:
read_chunk(file, temp_chunk)
if temp_chunk.ID == PCT_SHORT:
contextReflection = float(read_short(temp_chunk) / 100)
elif temp_chunk.ID == PCT_FLOAT:
contextReflection = float(read_float(temp_chunk))
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
elif new_chunk.ID == MAT_SELF_ILPCT:
read_chunk(file, temp_chunk)
if temp_chunk.ID == PCT_SHORT:
contextMaterial.line_priority = int(read_short(temp_chunk))
elif temp_chunk.ID == PCT_FLOAT:
contextMaterial.line_priority = (float(read_float(temp_chunk)) * 100)
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
elif new_chunk.ID == MAT_SHADING:
shading = read_short(new_chunk)
if shading >= 2:
contextWrapper.use_nodes = True
contextWrapper.base_color = contextColor[:]
contextWrapper.metallic = contextMaterial.metallic
contextWrapper.roughness = contextMaterial.roughness
contextWrapper.transmission = contextTransmission
contextWrapper.specular = contextMaterial.specular_intensity
contextWrapper.specular_tint = contextMaterial.specular_color[:]
contextWrapper.emission_color = contextMaterial.line_color[:3]
contextWrapper.emission_strength = contextMaterial.line_priority / 100
contextWrapper.alpha = contextMaterial.diffuse_color[3] = contextAlpha
contextWrapper.node_principled_bsdf.inputs['Coat Weight'].default_value = contextReflection
contextWrapper.use_nodes = False
if shading >= 3:
contextWrapper.use_nodes = True
elif new_chunk.ID == MAT_TEXTURE_MAP:
read_texture(new_chunk, temp_chunk, "Diffuse", 'COLOR')
elif new_chunk.ID == MAT_SPECULAR_MAP:
read_texture(new_chunk, temp_chunk, "Specular", 'SPECULARITY')
elif new_chunk.ID == MAT_OPACITY_MAP:
read_texture(new_chunk, temp_chunk, "Opacity", 'ALPHA')
elif new_chunk.ID == MAT_REFLECTION_MAP:
read_texture(new_chunk, temp_chunk, "Reflect", 'METALLIC')
elif new_chunk.ID == MAT_BUMP_MAP:
read_texture(new_chunk, temp_chunk, "Bump", 'NORMAL')
elif new_chunk.ID == MAT_BUMP_PERCENT:
read_chunk(file, temp_chunk)
if temp_chunk.ID == PCT_SHORT:
contextWrapper.normalmap_strength = (float(read_short(temp_chunk) / 100))
elif temp_chunk.ID == PCT_FLOAT:
contextWrapper.normalmap_strength = float(read_float(temp_chunk))
else:
skip_to_end(file, temp_chunk)
new_chunk.bytes_read += temp_chunk.bytes_read
elif new_chunk.ID == MAT_SHIN_MAP:
read_texture(new_chunk, temp_chunk, "Shininess", 'ROUGHNESS')
elif new_chunk.ID == MAT_SELFI_MAP:
read_texture(new_chunk, temp_chunk, "Emit", 'EMISSION')
elif new_chunk.ID == MAT_TEX2_MAP:
read_texture(new_chunk, temp_chunk, "Tex", 'TEXTURE')
# If object chunk - can be mesh, light and spot or camera
elif new_chunk.ID == OBJECT:
if CreateBlenderObject:
putContextMesh(context, contextMesh_vertls, contextMesh_facels, contextMesh_flag,
contextMeshMaterials, contextMesh_smooth, WORLD_MATRIX)
contextMesh_vertls = []
contextMesh_facels = []
contextMeshMaterials = []
contextMesh_flag = None
contextMesh_smooth = None
contextMeshUV = None
contextMatrix = None
CreateBlenderObject = True if CreateMesh else False
CreateLightObject = CreateCameraObject = False
contextObName, read_str_len = read_string(file)
new_chunk.bytes_read += read_str_len
# If mesh chunk
elif new_chunk.ID == OBJECT_MESH:
pass
elif CreateMesh and new_chunk.ID == OBJECT_VERTICES:
"""Worldspace vertex locations"""
num_verts = read_short(new_chunk)
contextMesh_vertls = struct.unpack('<%df' % (num_verts * 3), file.read(SZ_3FLOAT * num_verts))
new_chunk.bytes_read += SZ_3FLOAT * num_verts
elif CreateMesh and new_chunk.ID == OBJECT_FACES:
num_faces = read_short(new_chunk)
temp_data = file.read(SZ_4U_SHORT * num_faces)
new_chunk.bytes_read += SZ_4U_SHORT * num_faces # 4 short ints x 2 bytes each
contextMesh_facels = struct.unpack('<%dH' % (num_faces * 4), temp_data)
contextMesh_flag = [contextMesh_facels[i] for i in range(3, (num_faces * 4) + 3, 4)]
contextMesh_facels = [contextMesh_facels[i - 3:i] for i in range(3, (num_faces * 4) + 3, 4)]
elif CreateMesh and new_chunk.ID == OBJECT_MATERIAL:
material_name, read_str_len = read_string(file)
new_chunk.bytes_read += read_str_len # remove 1 null character.
num_faces_using_mat = read_short(new_chunk)
temp_data = file.read(SZ_U_SHORT * num_faces_using_mat)
new_chunk.bytes_read += SZ_U_SHORT * num_faces_using_mat
temp_data = struct.unpack('<%dH' % (num_faces_using_mat), temp_data)
contextMeshMaterials.append((material_name, temp_data))
# look up the material in all the materials
elif CreateMesh and new_chunk.ID == OBJECT_SMOOTH:
temp_data = file.read(SZ_U_INT * num_faces)
smoothgroup = struct.unpack('<%dI' % (num_faces), temp_data)
new_chunk.bytes_read += SZ_U_INT * num_faces
contextMesh_smooth = smoothgroup
elif CreateMesh and new_chunk.ID == OBJECT_UV:
num_uv = read_short(new_chunk)
temp_data = file.read(SZ_2FLOAT * num_uv)
new_chunk.bytes_read += SZ_2FLOAT * num_uv
contextMeshUV = struct.unpack('<%df' % (num_uv * 2), temp_data)
elif CreateMesh and new_chunk.ID == OBJECT_TRANS_MATRIX:
# How do we know the matrix size? 54 == 4x4 48 == 4x3
temp_data = file.read(SZ_4x3MAT)
mtx = list(struct.unpack('<ffffffffffff', temp_data))
new_chunk.bytes_read += SZ_4x3MAT
contextMatrix = mathutils.Matrix(
(mtx[:3] + [0], mtx[3:6] + [0], mtx[6:9] + [0], mtx[9:] + [1])).transposed()
# If hierarchy chunk
elif CreateMesh and new_chunk.ID == OBJECT_HIERARCHY:
child_id = get_hierarchy(new_chunk)
elif CreateMesh and new_chunk.ID == OBJECT_PARENT:
get_parent(new_chunk, child_id)
# If light chunk
elif new_chunk.ID == OBJECT_LIGHT: # Basic lamp support
CreateBlenderObject = False
if not CreateLight:
contextObName = None
skip_to_end(file, new_chunk)
else:
CreateLightObject = True
light = bpy.data.lights.new("Lamp", 'POINT')
contextLamp = bpy.data.objects.new(contextObName, light)
context.view_layer.active_layer_collection.collection.objects.link(contextLamp)
imported_objects.append(contextLamp)
object_dictionary[contextObName] = contextLamp
contextLamp.data.use_shadow = False
contextLamp.location = read_float_array(new_chunk) # Position
contextMatrix = None # Reset matrix
elif CreateLightObject and new_chunk.ID == COLOR_F: # Color
contextLamp.data.color = read_float_array(new_chunk)
elif CreateLightObject and new_chunk.ID == LIGHT_OUTER_RANGE: # Distance
contextLamp.data.cutoff_distance = read_float(new_chunk)
elif CreateLightObject and new_chunk.ID == LIGHT_INNER_RANGE: # Radius
contextLamp.data.shadow_soft_size = (read_float(new_chunk) * 0.01)
elif CreateLightObject and new_chunk.ID == LIGHT_MULTIPLIER: # Intensity
contextLamp.data.energy = (read_float(new_chunk) * 1000)
elif CreateLightObject and new_chunk.ID == LIGHT_ATTENUATE: # Attenuation
contextLamp.data.use_custom_distance = True
# If spotlight chunk
elif CreateLightObject and new_chunk.ID == LIGHT_SPOTLIGHT: # Spotlight
contextLamp.data.type = 'SPOT'
spot = mathutils.Vector(read_float_array(new_chunk)) # Spot location
aim = calc_target(contextLamp.location, spot) # Target
contextLamp.rotation_euler.x = aim[0]
contextLamp.rotation_euler.z = aim[1]
hotspot = read_float(new_chunk) # Hotspot
beam_angle = read_float(new_chunk) # Beam angle
contextLamp.data.spot_size = math.radians(beam_angle)
contextLamp.data.spot_blend = 1.0 - (hotspot / beam_angle)
elif CreateLightObject and new_chunk.ID == LIGHT_SPOT_ROLL: # Roll
contextLamp.rotation_euler.y = read_float(new_chunk)
elif CreateLightObject and new_chunk.ID == LIGHT_SPOT_SHADOWED: # Shadow flag
contextLamp.data.use_shadow = True
elif CreateLightObject and new_chunk.ID == LIGHT_LOCAL_SHADOW2: # Shadow parameters
contextLamp.data.shadow_buffer_bias = read_float(new_chunk)
contextLamp.data.shadow_buffer_clip_start = (read_float(new_chunk) * 0.1)
temp_data = file.read(SZ_U_SHORT)
new_chunk.bytes_read += SZ_U_SHORT
elif CreateLightObject and new_chunk.ID == LIGHT_SPOT_SEE_CONE: # Cone flag
contextLamp.data.show_cone = True
elif CreateLightObject and new_chunk.ID == LIGHT_SPOT_RECTANGLE: # Square flag
contextLamp.data.use_square = True
elif CreateLightObject and new_chunk.ID == LIGHT_SPOT_ASPECT: # Aspect
contextLamp.empty_display_size = read_float(new_chunk)
elif CreateLightObject and new_chunk.ID == LIGHT_SPOT_PROJECTOR: # Projection
contextLamp.data.use_nodes = True
nodes = contextLamp.data.node_tree.nodes
links = contextLamp.data.node_tree.links
mix = nodes.new(type='ShaderNodeMixRGB')
rgb = nodes.new(type='ShaderNodeRGB')
mix.location = (-140, 320)
rgb.location = (-400, 120)
gobo_name, read_str_len = read_string(file)
new_chunk.bytes_read += read_str_len
projection = nodes.new(type='ShaderNodeTexImage')
projection.label = gobo_name
projection.location = (-480, 420)
projection.image = load_image(gobo_name, dirname, place_holder=False, recursive=IMAGE_SEARCH, check_existing=True)
emitnode = next((node for node in nodes if node.type == 'EMISSION'), False)
emit = emitnode if emitnode else nodes.new(type='ShaderNodeEmission')
emit.label = "Projector"
emit.location = (80, 300)
emit.inputs[0].default_value[:3] = mix.inputs[2].default_value[:3] = rgb.outputs[0].default_value[:3] = contextLamp.data.color
links.new(emit.outputs['Emission'], nodes['Light Output'].inputs[0])
links.new(projection.outputs['Color'], mix.inputs[1])
links.new(mix.outputs[0], emit.inputs[0])
links.new(rgb.outputs[0], mix.inputs[2])
elif CreateLightObject and new_chunk.ID == OBJECT_HIERARCHY: # Hierarchy
child_id = get_hierarchy(new_chunk)
elif CreateLightObject and new_chunk.ID == OBJECT_PARENT:
get_parent(new_chunk, child_id)
# If camera chunk
elif new_chunk.ID == OBJECT_CAMERA: # Basic camera support
CreateBlenderObject = False
if not CreateCamera:
contextObName = None
skip_to_end(file, new_chunk)
else:
CreateCameraObject = True
camera = bpy.data.cameras.new("Camera")
contextCamera = bpy.data.objects.new(contextObName, camera)
context.view_layer.active_layer_collection.collection.objects.link(contextCamera)
imported_objects.append(contextCamera)
object_dictionary[contextObName] = contextCamera
contextCamera.location = read_float_array(new_chunk) # Position
focus = mathutils.Vector(read_float_array(new_chunk))
direction = calc_target(contextCamera.location, focus) # Target
contextCamera.rotation_euler.x = direction[0]
contextCamera.rotation_euler.y = read_float(new_chunk) # Roll
contextCamera.rotation_euler.z = direction[1]
contextCamera.data.lens = read_float(new_chunk) # Focal length
contextMatrix = None # Reset matrix
elif CreateCameraObject and new_chunk.ID == OBJECT_CAM_RANGES: # Range
camrange = read_float(new_chunk)
startrange = camrange if camrange >= 0.01 else 0.1
contextCamera.data.clip_start = startrange * CONSTRAIN
contextCamera.data.clip_end = read_float(new_chunk) * CONSTRAIN
elif CreateCameraObject and new_chunk.ID == OBJECT_HIERARCHY: # Hierarchy
child_id = get_hierarchy(new_chunk)
elif CreateCameraObject and new_chunk.ID == OBJECT_PARENT:
get_parent(new_chunk, child_id)
# start keyframe section
elif new_chunk.ID == EDITKEYFRAME:
pass
elif KEYFRAME and new_chunk.ID == KFDATA_KFSEG:
start = read_long(new_chunk)
context.scene.frame_start = start
stop = read_long(new_chunk)
context.scene.frame_end = stop
elif KEYFRAME and new_chunk.ID == KFDATA_CURTIME:
current = read_long(new_chunk)
context.scene.frame_current = current
# including these here means their OB_NODE_HDR are scanned
elif new_chunk.ID in {KF_AMBIENT, KF_OBJECT, KF_OBJECT_CAMERA, KF_OBJECT_LIGHT, KF_OBJECT_SPOT_LIGHT}:
tracktype = str([kf for kf,ck in globals().items() if ck == new_chunk.ID][0]).split("_")[1]
tracking = str([kf for kf,ck in globals().items() if ck == new_chunk.ID][0]).split("_")[-1]
spotting = str([kf for kf,ck in globals().items() if ck == new_chunk.ID][0]).split("_")[-2]
object_id = hierarchy = ROOT_OBJECT
child = None
if not CreateWorld and tracking == 'AMBIENT':
skip_to_end(file, new_chunk)
if not CreateLight and tracking == 'LIGHT':
skip_to_end(file, new_chunk)
if not CreateCamera and tracking == 'CAMERA':
skip_to_end(file, new_chunk)
elif CreateTrackData and new_chunk.ID in {KF_TARGET_CAMERA, KF_TARGET_LIGHT}:
tracktype = str([kf for kf,ck in globals().items() if ck == new_chunk.ID][0]).split("_")[1]
tracking = str([kf for kf,ck in globals().items() if ck == new_chunk.ID][0]).split("_")[-1]
child = None
if not CreateLight and tracking == 'LIGHT':
skip_to_end(file, new_chunk)
if not CreateCamera and tracking == 'CAMERA':
skip_to_end(file, new_chunk)
elif new_chunk.ID == OBJECT_NODE_ID:
object_id = read_short(new_chunk)
elif new_chunk.ID == OBJECT_NODE_HDR:
object_name, read_str_len = read_string(file)
new_chunk.bytes_read += read_str_len
temp_data = file.read(SZ_U_INT)
new_chunk.bytes_read += SZ_U_INT
hierarchy = read_short(new_chunk)
child = object_dictionary.get(object_name)
if child is None:
if CreateWorld and tracking == 'AMBIENT':
child = context.scene.world
child.use_nodes = True
nodetree = child.node_tree
links = nodetree.links
nodes = nodetree.nodes
worldout = nodes['World Output']
mixshade = nodes.new(type='ShaderNodeMixShader')
ambinode = nodes.new(type='ShaderNodeEmission')
ambilite = nodes.new(type='ShaderNodeRGB')
ambilite.label = "Ambient Color"
mixshade.label = "Surface"
ambinode.inputs[0].default_value[:3] = child.color
ambinode.location = (10, 180)
worldout.location = (600, 180)
mixshade.location = (300, 280)
ambilite.location = (-250, 100)
links.new(mixshade.outputs[0], worldout.inputs['Surface'])
links.new(nodes['Background'].outputs[0], mixshade.inputs[1])
links.new(ambinode.outputs[0], mixshade.inputs[2])
links.new(ambilite.outputs[0], ambinode.inputs[0])
ambinode.label = object_name if object_name != '$AMBIENT$' else "Ambient"
elif CreateEmpty and tracking == 'OBJECT' and object_name == '$$$DUMMY':
child = bpy.data.objects.new(object_name, None) # Create an empty object
context.view_layer.active_layer_collection.collection.objects.link(child)
imported_objects.append(child)
else:
tracking = tracktype = None
if tracktype != 'TARGET' and tracking != 'AMBIENT':
object_dict[object_id] = child
object_list.append(child)
object_parent.append(hierarchy)
pivot_list.append(mathutils.Vector((0.0, 0.0, 0.0)))
elif new_chunk.ID == PARENT_NAME:
parent_name, read_str_len = read_string(file)
parent_dictionary.setdefault(parent_name, []).append(child)
new_chunk.bytes_read += read_str_len
elif new_chunk.ID == OBJECT_INSTANCE_NAME and tracking == 'OBJECT':
instance_name, read_str_len = read_string(file)
if child.name == '$$$DUMMY':
child.name = instance_name
else: # Child is an instance
child = child.copy()
child.name = object_name + "." + instance_name
context.view_layer.active_layer_collection.collection.objects.link(child)
object_dict[object_id] = child
object_list[-1] = child
object_dictionary[child.name] = child
new_chunk.bytes_read += read_str_len
elif new_chunk.ID == OBJECT_PIVOT and tracking == 'OBJECT': # Pivot
pivot = read_float_array(new_chunk)
pivot_list[len(pivot_list) - 1] = mathutils.Vector(pivot)
elif new_chunk.ID == MORPH_SMOOTH and tracking == 'OBJECT': # Smooth angle
smooth_angle = read_float(new_chunk)
if child.data is not None: # Check if child is a dummy
child.data.set_sharp_from_angle(angle=smooth_angle)
elif KEYFRAME and new_chunk.ID == COL_TRACK_TAG and tracking == 'AMBIENT': # Ambient
keyframe_data = {}
keyframe_data[0] = child.color[:]
child.color = read_track_data(new_chunk)[0]
ambinode.inputs[0].default_value[:3] = child.color
ambilite.outputs[0].default_value[:3] = child.color
for keydata in keyframe_data.items():
ambinode.inputs[0].default_value[:3] = keydata[1]
child.color = ambilite.outputs[0].default_value[:3] = keydata[1]
child.keyframe_insert(data_path="color", frame=keydata[0])
nodetree.keyframe_insert(data_path="nodes[\"RGB\"].outputs[0].default_value", frame=keydata[0])
nodetree.keyframe_insert(data_path="nodes[\"Emission\"].inputs[0].default_value", frame=keydata[0])
contextTrack_flag = False
elif KEYFRAME and new_chunk.ID == COL_TRACK_TAG and tracking == 'LIGHT': # Color
keyframe_data = {}
keyframe_data[0] = child.data.color[:]
child.data.color = read_track_data(new_chunk)[0]
child.data.use_nodes = True
tree = child.data.node_tree
emitnode = next((nd for nd in tree.nodes if nd.type == 'EMISSION'), False)
colornode = next((nd for nd in tree.nodes if nd.type == 'RGB'), False)
if emitnode:
emitnode.inputs[0].default_value[:3] = child.data.color
if colornode:
colornode.outputs[0].default_value[:3] = child.data.color
for keydata in keyframe_data.items():
child.data.color = keydata[1]
child.data.keyframe_insert(data_path="color", frame=keydata[0])
if emitnode:
emitnode.inputs[0].default_value[:3] = keydata[1]
tree.keyframe_insert(data_path="nodes[\"Emission\"].inputs[0].default_value", frame=keydata[0])
if colornode:
colornode.outputs[0].default_value[:3] = keydata[1]
tree.keyframe_insert(data_path="nodes[\"RGB\"].outputs[0].default_value", frame=keydata[0])
contextTrack_flag = False
elif KEYFRAME and new_chunk.ID == POS_TRACK_TAG and tracktype == 'OBJECT': # Translation
keyframe_data = {}
keyframe_data[0] = child.location[:]
trackpos = mathutils.Vector(read_track_data(new_chunk)[0])
loca_mtx = mathutils.Matrix.Translation(-1*trackpos)
matrix_transform[child.name] = loca_mtx
child.location = trackpos
if child.type in {'LIGHT', 'CAMERA'}:
trackposition[0] = child.location
CreateTrackData = True
if contextTrack_flag & 0x8: # Flag 0x8 locks X axis
child.lock_location[0] = True
if contextTrack_flag & 0x10: # Flag 0x10 locks Y axis
child.lock_location[1] = True
if contextTrack_flag & 0x20: # Flag 0x20 locks Z axis
child.lock_location[2] = True
for keydata in keyframe_data.items():
trackposition[keydata[0]] = keydata[1] # Keep track to position for target calculation
child.location = apply_constrain(keydata[1]) if hierarchy == ROOT_OBJECT else mathutils.Vector(keydata[1])
if MEASURE != 1.0:
child.location = child.location * MEASURE
if hierarchy == ROOT_OBJECT:
child.location.rotate(CONVERSE)
if not contextTrack_flag & 0x100: # Flag 0x100 unlinks X axis
child.keyframe_insert(data_path="location", index=0, frame=keydata[0])
if not contextTrack_flag & 0x200: # Flag 0x200 unlinks Y axis
child.keyframe_insert(data_path="location", index=1, frame=keydata[0])
if not contextTrack_flag & 0x400: # Flag 0x400 unlinks Z axis
child.keyframe_insert(data_path="location", index=2, frame=keydata[0])
contextTrack_flag = False
elif KEYFRAME and new_chunk.ID == POS_TRACK_TAG and tracktype == 'TARGET': # Target position
keyframe_data = {}
location = child.location
keyframe_data[0] = trackposition[0]
target = mathutils.Vector(read_track_data(new_chunk)[0])
direction = calc_target(location, target)
child.rotation_euler.x = direction[0]
child.rotation_euler.z = direction[1]
for keydata in keyframe_data.items():
track = trackposition.get(keydata[0], child.location)
locate = mathutils.Vector(track)
target = mathutils.Vector(keydata[1])
direction = calc_target(locate, target)
rotate = mathutils.Euler((direction[0], 0.0, direction[1]), 'XYZ').to_matrix()
scale = mathutils.Vector.Fill(3, (CONSTRAIN * 0.1)) if CONSTRAIN != 0.0 else child.scale
transformation = mathutils.Matrix.LocRotScale(locate, rotate, scale)
child.matrix_world = transformation
if MEASURE != 1.0:
child.matrix_world = mathutils.Matrix.Scale(MEASURE,4) @ child.matrix_world
if hierarchy == ROOT_OBJECT:
child.matrix_world = CONVERSE @ child.matrix_world
child.keyframe_insert(data_path="rotation_euler", index=0, frame=keydata[0])
child.keyframe_insert(data_path="rotation_euler", index=2, frame=keydata[0])
contextTrack_flag = False
elif KEYFRAME and new_chunk.ID == ROT_TRACK_TAG and tracktype == 'OBJECT': # Rotation
keyframe_rotation = {}
keyframe_rotation[0] = child.rotation_axis_angle[:]
tflags = read_short(new_chunk)
temp_data = file.read(SZ_U_INT * 2)
new_chunk.bytes_read += SZ_U_INT * 2
nkeys = read_long(new_chunk)
if tflags & 0x8: # Flag 0x8 locks X axis
child.lock_rotation[0] = True
if tflags & 0x10: # Flag 0x10 locks Y axis
child.lock_rotation[1] = True
if tflags & 0x20: # Flag 0x20 locks Z axis
child.lock_rotation[2] = True
for i in range(nkeys):
nframe = read_long(new_chunk)
nflags = read_short(new_chunk)
for f in range(bin(nflags).count('1')):
temp_data = file.read(SZ_FLOAT) # Check for spline term values
new_chunk.bytes_read += SZ_FLOAT
temp_data = file.read(SZ_4FLOAT)
rotation = struct.unpack('<4f', temp_data)
new_chunk.bytes_read += SZ_4FLOAT
keyframe_rotation[nframe] = rotation
rad, axis_x, axis_y, axis_z = keyframe_rotation[0]
trackrot = mathutils.Quaternion((axis_x, axis_y, axis_z), -rad) # Why negative?
rota_mtx = mathutils.Matrix.Rotation(trackrot.angle, 4, trackrot.axis)
transrot = matrix_transform.get(child.name)
if transrot is not None:
matrix_transform[child.name] = rota_mtx.inverted() @ transrot
child.rotation_euler = trackrot.to_euler()
for keydata in keyframe_rotation.items():
rad, axis_x, axis_y, axis_z = keydata[1]
child.rotation_euler = mathutils.Quaternion((axis_x, axis_y, axis_z), -rad).to_euler()
if hierarchy == ROOT_OBJECT:
child.rotation_euler.rotate(CONVERSE)
if not tflags & 0x100: # Flag 0x100 unlinks X axis
child.keyframe_insert(data_path="rotation_euler", index=0, frame=keydata[0])
if not tflags & 0x200: # Flag 0x200 unlinks Y axis
child.keyframe_insert(data_path="rotation_euler", index=1, frame=keydata[0])
if not tflags & 0x400: # Flag 0x400 unlinks Z axis
child.keyframe_insert(data_path="rotation_euler", index=2, frame=keydata[0])
elif KEYFRAME and new_chunk.ID == SCL_TRACK_TAG and tracktype == 'OBJECT': # Scale
keyframe_data = {}
keyframe_data[0] = child.scale[:]
trackscale = mathutils.Vector(read_track_data(new_chunk)[0])
scale_mtx = mathutils.Matrix.Diagonal(trackscale)
transscale = matrix_transform.get(child.name)
if transscale is not None:
matrix_transform[child.name] = scale_mtx.to_4x4() @ transscale
child.scale = trackscale
if contextTrack_flag & 0x8: # Flag 0x8 locks X axis
child.lock_scale[0] = True
if contextTrack_flag & 0x10: # Flag 0x10 locks Y axis
child.lock_scale[1] = True
if contextTrack_flag & 0x20: # Flag 0x20 locks Z axis
child.lock_scale[2] = True
for keydata in keyframe_data.items():
child.scale = apply_constrain(keydata[1]) if hierarchy == ROOT_OBJECT else mathutils.Vector(keydata[1])
if not contextTrack_flag & 0x100: # Flag 0x100 unlinks X axis
child.keyframe_insert(data_path="scale", index=0, frame=keydata[0])
if not contextTrack_flag & 0x200: # Flag 0x200 unlinks Y axis
child.keyframe_insert(data_path="scale", index=1, frame=keydata[0])
if not contextTrack_flag & 0x400: # Flag 0x400 unlinks Z axis
child.keyframe_insert(data_path="scale", index=2, frame=keydata[0])
contextTrack_flag = False
elif KEYFRAME and new_chunk.ID == ROLL_TRACK_TAG and tracktype == 'OBJECT': # Roll angle
keyframe_angle = {}
keyframe_angle[0] = child.rotation_euler.y
child.rotation_euler.y = read_track_angle(new_chunk)[0]
for keydata in keyframe_angle.items():
child.rotation_euler.y = keydata[1]
if hierarchy == ROOT_OBJECT:
child.rotation_euler.rotate(CONVERSE)
child.keyframe_insert(data_path="rotation_euler", index=1, frame=keydata[0])
elif KEYFRAME and new_chunk.ID == FOV_TRACK_TAG and tracking == 'CAMERA': # Field of view
keyframe_angle = {}
keyframe_angle[0] = child.data.angle
child.data.angle = read_track_angle(new_chunk)[0]
for keydata in keyframe_angle.items():
child.data.lens = (child.data.sensor_width / 2) / math.tan(keydata[1] / 2)
child.data.keyframe_insert(data_path="lens", frame=keydata[0])
elif KEYFRAME and new_chunk.ID == HOTSPOT_TRACK_TAG and tracking == 'LIGHT' and spotting == 'SPOT': # Hotspot
keyframe_angle = {}
cone_angle = math.degrees(child.data.spot_size)
keyframe_angle[0] = cone_angle-(child.data.spot_blend * math.floor(cone_angle))
hot_spot = math.degrees(read_track_angle(new_chunk)[0])
child.data.spot_blend = 1.0 - (hot_spot / cone_angle)
for keydata in keyframe_angle.items():
child.data.spot_blend = 1.0 - (math.degrees(keydata[1]) / cone_angle)
child.data.keyframe_insert(data_path="spot_blend", frame=keydata[0])
elif KEYFRAME and new_chunk.ID == FALLOFF_TRACK_TAG and tracking == 'LIGHT' and spotting == 'SPOT': # Falloff
keyframe_angle = {}
keyframe_angle[0] = math.degrees(child.data.spot_size)
child.data.spot_size = read_track_angle(new_chunk)[0]
for keydata in keyframe_angle.items():
child.data.spot_size = keydata[1]
child.data.keyframe_insert(data_path="spot_size", frame=keydata[0])
else:
buffer_size = new_chunk.length - new_chunk.bytes_read
binary_format = '%ic' % buffer_size
temp_data = file.read(struct.calcsize(binary_format))
new_chunk.bytes_read += buffer_size
# update the previous chunk bytes read
previous_chunk.bytes_read += new_chunk.bytes_read
# FINISHED LOOP
# There will be a number of objects still not added
if CreateBlenderObject:
putContextMesh(context, contextMesh_vertls, contextMesh_facels, contextMesh_flag,
contextMeshMaterials, contextMesh_smooth, WORLD_MATRIX)
# Fix transform
if APPLY_MATRIX:
for obj, mtx in matrix_transform.items():
cld = object_dictionary.get(obj)
if (cld and cld.data) and cld.type == 'MESH':
cld.data.transform(mtx)
# Assign parents to objects
# check _if_ we need to assign first because doing so recalcs the depsgraph
for ind, ob in enumerate(object_list):
if ob is None:
continue
parent = object_parent[ind]
if parent == ROOT_OBJECT:
ob.parent = None
elif parent not in object_dict:
try:
ob.parent = object_list[parent]
except Exception as exc:
print("/tError: ", exc)
else: # get parent from node_id number
try:
ob.parent = object_dict.get(parent)
except: # self to parent exception
pass
#pivot_list[ind] += pivot_list[parent] # Not sure this is correct, should parent space matrix be applied before combining?
# if parent name
parent_dictionary.pop(None, ...)
for par, objs in parent_dictionary.items():
parent = object_dictionary.get(par)
for ob in objs:
if parent is not None:
ob.parent = parent
parent_dictionary.clear()
# If hierarchy
hierarchy = dict(zip(childs_list, parent_list))
hierarchy.pop(None, ...)
for idt, (child, parent) in enumerate(hierarchy.items()):
child_obj = object_dictionary.get(child)
parent_obj = object_dictionary.get(parent)
if child_obj and parent_obj is not None:
child_obj.parent = parent_obj
# fix pivots
for ind, ob in enumerate(object_list):
if ob is None:
continue
elif ob.type == 'MESH':
pivot = pivot_list[ind]
pivot_matrix = object_matrix.get(ob, mathutils.Matrix()) # unlikely to fail
pivot_matrix = mathutils.Matrix.Translation(-1 * pivot)
# pivot_matrix = mathutils.Matrix.Translation(pivot_matrix.to_3x3() @ -pivot)
ob.data.transform(pivot_matrix)
if APPLY_MATRIX:
cld = ob
mat = mathutils.Matrix()
while cld.parent:
trans = matrix_transform.get(cld.parent.name)
if trans is not None:
mat = trans @ mat
cld = cld.parent
if ob.type == 'MESH' and ob.data and ob.parent:
ob.data.transform(mat)
##########
# IMPORT #
##########
def load_3ds(filepath, context, CONSTRAIN=10.0, UNITS=False, IMAGE_SEARCH=True,
FILTER=None, WORLD_MATRIX=False, KEYFRAME=True, APPLY_MATRIX=True,
CONVERSE=None, CURSOR=False, PIVOT=False):
print("importing 3DS: %r..." % (filepath), end="")
if bpy.ops.object.select_all.poll():
bpy.ops.object.select_all(action='DESELECT')
MEASURE = 1.0
duration = time.time()
current_chunk = Chunk()
file = open(filepath, 'rb')
# here we go!
read_chunk(file, current_chunk)
if current_chunk.ID != PRIMARY:
print("\tFatal Error: Not a valid 3ds file: %r" % filepath)
file.close()
return
if CONSTRAIN:
BOUNDS_3DS[:] = [1 << 30, 1 << 30, 1 << 30, -1 << 30, -1 << 30, -1 << 30]
else:
del BOUNDS_3DS[:]
# fixme, make unglobal, clear in case
object_dictionary.clear()
matrix_transform.clear()
object_matrix.clear()
scn = context.scene
if UNITS:
unit_length = scn.unit_settings.length_unit
if unit_length == 'MILES':
MEASURE = 1609.344
elif unit_length == 'KILOMETERS':
MEASURE = 1000.0
elif unit_length == 'FEET':
MEASURE = 0.3048
elif unit_length == 'INCHES':
MEASURE = 0.0254
elif unit_length == 'CENTIMETERS':
MEASURE = 0.01
elif unit_length == 'MILLIMETERS':
MEASURE = 0.001
elif unit_length == 'THOU':
MEASURE = 0.0000254
elif unit_length == 'MICROMETERS':
MEASURE = 0.000001
context.window.cursor_set('WAIT')
imported_objects = [] # Fill this list with objects
process_next_chunk(context, file, current_chunk, imported_objects, CONSTRAIN, FILTER,
IMAGE_SEARCH, WORLD_MATRIX, KEYFRAME, APPLY_MATRIX, CONVERSE, MEASURE, CURSOR)
# fixme, make unglobal
matrix_transform.clear()
object_dictionary.clear()
object_matrix.clear()
"""
if APPLY_MATRIX:
for ob in imported_objects:
if ob.type == 'MESH':
ob.data.transform(ob.matrix_local.inverted())
"""
if UNITS:
unit_mtx = mathutils.Matrix.Scale(MEASURE,4)
for ob in imported_objects:
if ob.type == 'MESH':
ob.data.transform(unit_mtx)
if CONVERSE and not KEYFRAME:
for ob in imported_objects:
ob.location.rotate(CONVERSE)
ob.rotation_euler.rotate(CONVERSE)
# Select all new objects
for ob in imported_objects:
if ob.type == 'LIGHT' and ob.data.type == 'SPOT':
square = math.sqrt(pow(1.0,2) + pow(1.0,2))
aspect = ob.empty_display_size
ob.scale.x = (aspect * square / (math.sqrt(pow(aspect,2) + 1.0)))
ob.scale.y = (square / (math.sqrt(pow(aspect,2) + 1.0)))
ob.scale.z = 1.0
ob.select_set(True)
if ob.type == 'MESH':
if PIVOT:
bpy.ops.object.origin_set(type='GEOMETRY_ORIGIN')
if not APPLY_MATRIX: # Reset transform
bpy.ops.object.rotation_clear()
bpy.ops.object.location_clear()
bpy.ops.object.scale_clear()
context.view_layer.update()
axis_min = [1000000000] * 3
axis_max = [-1000000000] * 3
global_clamp_size = CONSTRAIN * 10000
if global_clamp_size != 0.0:
# Get all object bounds
for ob in imported_objects:
for v in ob.bound_box:
for axis, value in enumerate(v):
if axis_min[axis] > value:
axis_min[axis] = value
if axis_max[axis] < value:
axis_max[axis] = value
# Scale objects
max_axis = max(axis_max[0] - axis_min[0],
axis_max[1] - axis_min[1],
axis_max[2] - axis_min[2])
scale = 1.0
while global_clamp_size < max_axis * scale:
scale = scale / 10.0
mtx_scale = mathutils.Matrix.Scale(scale, 4)
for obj in imported_objects:
if obj.parent is None:
obj.matrix_world = mtx_scale @ obj.matrix_world
for screen in bpy.data.screens:
for area in screen.areas:
if area.type == 'VIEW_3D':
area.spaces[0].clip_start = scale * 0.1
area.spaces[0].clip_end = scale * 10000
context.window.cursor_set('DEFAULT')
print(" done in %.4f sec." % (time.time() - duration))
file.close()
def load(operator, context, files=None, directory="", filepath="", constrain_size=0.0, use_scene_unit=False,
use_image_search=True, object_filter=None, use_world_matrix=False, use_keyframes=True,
use_apply_transform=True, global_matrix=None, use_cursor=False, use_center_pivot=False, use_collection=False):
# Get the active collection
collection_init = context.view_layer.active_layer_collection.collection
# Load each selected file
for file in files:
# Create new collections if activated (collection name = 3ds file name)
if use_collection:
collection = bpy.data.collections.new(Path(file.name).stem)
context.scene.collection.children.link(collection)
context.view_layer.active_layer_collection = context.view_layer.layer_collection.children[collection.name]
load_3ds(Path(directory, file.name), context, CONSTRAIN=constrain_size, UNITS=use_scene_unit,
IMAGE_SEARCH=use_image_search, FILTER=object_filter, WORLD_MATRIX=use_world_matrix, KEYFRAME=use_keyframes,
APPLY_MATRIX=use_apply_transform, CONVERSE=global_matrix, CURSOR=use_cursor, PIVOT=use_center_pivot,)
# Retrive the initial collection as active
active = context.view_layer.layer_collection.children.get(collection_init.name)
if active is not None:
context.view_layer.active_layer_collection = active
return {'FINISHED'}