mirror of
https://github.com/blender/blender-addons.git
synced 2025-07-25 16:05:20 +00:00

The solid mode of Add Mesh Extra Objects creates quad geometry. This decision comes from a time when ngons were not supported in Blender, before the switch to bmesh. This commit removes the conversion step, as it is better to leave it up to the user to triangulate or quadrangulate their geometry.
496 lines
21 KiB
Python
496 lines
21 KiB
Python
# SPDX-FileCopyrightText: 2010-2022 Blender Foundation
|
|
#
|
|
# SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
# Author: DreamPainter
|
|
|
|
import bpy
|
|
from math import sqrt
|
|
from mathutils import Vector
|
|
from functools import reduce
|
|
from bpy.props import (
|
|
FloatProperty,
|
|
EnumProperty,
|
|
BoolProperty,
|
|
)
|
|
from bpy_extras.object_utils import object_data_add
|
|
|
|
|
|
# function to make the reduce function work as a workaround to sum a list of vectors
|
|
|
|
def vSum(list):
|
|
return reduce(lambda a, b: a + b, list)
|
|
|
|
|
|
# Get a copy of the input faces, but with the normals flipped by reversing the order of the vertex indices of each face.
|
|
def flippedFaceNormals(faces):
|
|
return [list(reversed(vertexIndices)) for vertexIndices in faces]
|
|
|
|
|
|
# creates the 5 platonic solids as a base for the rest
|
|
# plato: should be one of {"4","6","8","12","20"}. decides what solid the
|
|
# outcome will be.
|
|
# returns a list of vertices and faces
|
|
|
|
def source(plato):
|
|
verts = []
|
|
faces = []
|
|
|
|
# Tetrahedron
|
|
if plato == "4":
|
|
# Calculate the necessary constants
|
|
s = sqrt(2) / 3.0
|
|
t = -1 / 3
|
|
u = sqrt(6) / 3
|
|
|
|
# create the vertices and faces
|
|
v = [(0, 0, 1), (2 * s, 0, t), (-s, u, t), (-s, -u, t)]
|
|
faces = [[0, 1, 2], [0, 2, 3], [0, 3, 1], [1, 3, 2]]
|
|
|
|
# Hexahedron (cube)
|
|
elif plato == "6":
|
|
# Calculate the necessary constants
|
|
s = 1 / sqrt(3)
|
|
|
|
# create the vertices and faces
|
|
v = [(-s, -s, -s), (s, -s, -s), (s, s, -s), (-s, s, -s), (-s, -s, s), (s, -s, s), (s, s, s), (-s, s, s)]
|
|
faces = [[0, 3, 2, 1], [0, 1, 5, 4], [0, 4, 7, 3], [6, 5, 1, 2], [6, 2, 3, 7], [6, 7, 4, 5]]
|
|
|
|
# Octahedron
|
|
elif plato == "8":
|
|
# create the vertices and faces
|
|
v = [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]
|
|
faces = [[4, 0, 2], [4, 2, 1], [4, 1, 3], [4, 3, 0], [5, 2, 0], [5, 1, 2], [5, 3, 1], [5, 0, 3]]
|
|
|
|
# Dodecahedron
|
|
elif plato == "12":
|
|
# Calculate the necessary constants
|
|
s = 1 / sqrt(3)
|
|
t = sqrt((3 - sqrt(5)) / 6)
|
|
u = sqrt((3 + sqrt(5)) / 6)
|
|
|
|
# create the vertices and faces
|
|
v = [(s, s, s), (s, s, -s), (s, -s, s), (s, -s, -s), (-s, s, s), (-s, s, -s), (-s, -s, s), (-s, -s, -s),
|
|
(t, u, 0), (-t, u, 0), (t, -u, 0), (-t, -u, 0), (u, 0, t), (u, 0, -t), (-u, 0, t), (-u, 0, -t), (0, t, u),
|
|
(0, -t, u), (0, t, -u), (0, -t, -u)]
|
|
faces = [[0, 8, 9, 4, 16], [0, 12, 13, 1, 8], [0, 16, 17, 2, 12], [8, 1, 18, 5, 9], [12, 2, 10, 3, 13],
|
|
[16, 4, 14, 6, 17], [9, 5, 15, 14, 4], [6, 11, 10, 2, 17], [3, 19, 18, 1, 13], [7, 15, 5, 18, 19],
|
|
[7, 11, 6, 14, 15], [7, 19, 3, 10, 11]]
|
|
|
|
# Icosahedron
|
|
elif plato == "20":
|
|
# Calculate the necessary constants
|
|
s = (1 + sqrt(5)) / 2
|
|
t = sqrt(1 + s * s)
|
|
s = s / t
|
|
t = 1 / t
|
|
|
|
# create the vertices and faces
|
|
v = [(s, t, 0), (-s, t, 0), (s, -t, 0), (-s, -t, 0), (t, 0, s), (t, 0, -s), (-t, 0, s), (-t, 0, -s),
|
|
(0, s, t), (0, -s, t), (0, s, -t), (0, -s, -t)]
|
|
faces = [[0, 8, 4], [0, 5, 10], [2, 4, 9], [2, 11, 5], [1, 6, 8], [1, 10, 7], [3, 9, 6], [3, 7, 11],
|
|
[0, 10, 8], [1, 8, 10], [2, 9, 11], [3, 11, 9], [4, 2, 0], [5, 0, 2], [6, 1, 3], [7, 3, 1],
|
|
[8, 6, 4], [9, 4, 6], [10, 5, 7], [11, 7, 5]]
|
|
|
|
# convert the tuples to Vectors
|
|
verts = [Vector(i) for i in v]
|
|
|
|
return verts, faces
|
|
|
|
|
|
# processes the raw data from source
|
|
|
|
def createSolid(plato, vtrunc, etrunc, dual, snub):
|
|
# the duals from each platonic solid
|
|
dualSource = {"4": "4",
|
|
"6": "8",
|
|
"8": "6",
|
|
"12": "20",
|
|
"20": "12"}
|
|
|
|
# constants saving space and readability
|
|
vtrunc *= 0.5
|
|
etrunc *= 0.5
|
|
supposedSize = 0
|
|
noSnub = (snub == "None") or (etrunc == 0.5) or (etrunc == 0)
|
|
lSnub = (snub == "Left") and (0 < etrunc < 0.5)
|
|
rSnub = (snub == "Right") and (0 < etrunc < 0.5)
|
|
|
|
# no truncation
|
|
if vtrunc == 0:
|
|
if dual: # dual is as simple as another, but mirrored platonic solid
|
|
vInput, fInput = source(dualSource[plato])
|
|
supposedSize = vSum(vInput[i] for i in fInput[0]).length / len(fInput[0])
|
|
vInput = [-i * supposedSize for i in vInput] # mirror it
|
|
# Inverting vInput turns the mesh inside-out, so normals need to be flipped.
|
|
return vInput, flippedFaceNormals(fInput)
|
|
return source(plato)
|
|
elif 0 < vtrunc <= 0.5: # simple truncation of the source
|
|
vInput, fInput = source(plato)
|
|
else:
|
|
# truncation is now equal to simple truncation of the dual of the source
|
|
vInput, fInput = source(dualSource[plato])
|
|
supposedSize = vSum(vInput[i] for i in fInput[0]).length / len(fInput[0])
|
|
vtrunc = 1 - vtrunc # account for the source being a dual
|
|
if vtrunc == 0: # no truncation needed
|
|
if dual:
|
|
vInput, fInput = source(plato)
|
|
vInput = [-i * supposedSize for i in vInput]
|
|
# Inverting vInput turns the mesh inside-out, so normals need to be flipped.
|
|
return vInput, flippedFaceNormals(fInput)
|
|
|
|
# generate connection database
|
|
vDict = [{} for i in vInput]
|
|
# for every face, store what vertex comes after and before the current vertex
|
|
for x in range(len(fInput)):
|
|
i = fInput[x]
|
|
for j in range(len(i)):
|
|
vDict[i[j - 1]][i[j]] = [i[j - 2], x]
|
|
if len(vDict[i[j - 1]]) == 1:
|
|
vDict[i[j - 1]][-1] = i[j]
|
|
|
|
# the actual connection database: exists out of:
|
|
# [vtrunc pos, etrunc pos, connected vert IDs, connected face IDs]
|
|
vData = [[[], [], [], []] for i in vInput]
|
|
fvOutput = [] # faces created from truncated vertices
|
|
feOutput = [] # faces created from truncated edges
|
|
vOutput = [] # newly created vertices
|
|
for x in range(len(vInput)):
|
|
i = vDict[x] # lookup the current vertex
|
|
current = i[-1]
|
|
while True: # follow the chain to get a ccw order of connected verts and faces
|
|
vData[x][2].append(i[current][0])
|
|
vData[x][3].append(i[current][1])
|
|
# create truncated vertices
|
|
vData[x][0].append((1 - vtrunc) * vInput[x] + vtrunc * vInput[vData[x][2][-1]])
|
|
current = i[current][0]
|
|
if current == i[-1]:
|
|
break # if we're back at the first: stop the loop
|
|
fvOutput.append([]) # new face from truncated vert
|
|
fOffset = x * (len(i) - 1) # where to start off counting faceVerts
|
|
# only create one vert where one is needed (v1 todo: done)
|
|
if etrunc == 0.5:
|
|
for j in range(len(i) - 1):
|
|
vOutput.append((vData[x][0][j] + vData[x][0][j - 1]) * etrunc) # create vert
|
|
fvOutput[x].append(fOffset + j) # add to face
|
|
fvOutput[x] = fvOutput[x][1:] + [fvOutput[x][0]] # rotate face for ease later on
|
|
# create faces from truncated edges.
|
|
for j in range(len(i) - 1):
|
|
if x > vData[x][2][j]: # only create when other vertex has been added
|
|
index = vData[vData[x][2][j]][2].index(x)
|
|
feOutput.append([fvOutput[x][j], fvOutput[x][j - 1],
|
|
fvOutput[vData[x][2][j]][index],
|
|
fvOutput[vData[x][2][j]][index - 1]])
|
|
# edge truncation between none and full
|
|
elif etrunc > 0:
|
|
for j in range(len(i) - 1):
|
|
# create snubs from selecting verts from rectified meshes
|
|
if rSnub:
|
|
vOutput.append(etrunc * vData[x][0][j] + (1 - etrunc) * vData[x][0][j - 1])
|
|
fvOutput[x].append(fOffset + j)
|
|
elif lSnub:
|
|
vOutput.append((1 - etrunc) * vData[x][0][j] + etrunc * vData[x][0][j - 1])
|
|
fvOutput[x].append(fOffset + j)
|
|
else: # noSnub, select both verts from rectified mesh
|
|
vOutput.append(etrunc * vData[x][0][j] + (1 - etrunc) * vData[x][0][j - 1])
|
|
vOutput.append((1 - etrunc) * vData[x][0][j] + etrunc * vData[x][0][j - 1])
|
|
fvOutput[x].append(2 * fOffset + 2 * j)
|
|
fvOutput[x].append(2 * fOffset + 2 * j + 1)
|
|
# rotate face for ease later on
|
|
if noSnub:
|
|
fvOutput[x] = fvOutput[x][2:] + fvOutput[x][:2]
|
|
else:
|
|
fvOutput[x] = fvOutput[x][1:] + [fvOutput[x][0]]
|
|
# create single face for each edge
|
|
if noSnub:
|
|
for j in range(len(i) - 1):
|
|
if x > vData[x][2][j]:
|
|
index = vData[vData[x][2][j]][2].index(x)
|
|
feOutput.append([fvOutput[x][j * 2], fvOutput[x][2 * j - 1],
|
|
fvOutput[vData[x][2][j]][2 * index],
|
|
fvOutput[vData[x][2][j]][2 * index - 1]])
|
|
# create 2 tri's for each edge for the snubs
|
|
elif rSnub:
|
|
for j in range(len(i) - 1):
|
|
if x > vData[x][2][j]:
|
|
index = vData[vData[x][2][j]][2].index(x)
|
|
feOutput.append([fvOutput[x][j], fvOutput[x][j - 1],
|
|
fvOutput[vData[x][2][j]][index]])
|
|
feOutput.append([fvOutput[x][j], fvOutput[vData[x][2][j]][index],
|
|
fvOutput[vData[x][2][j]][index - 1]])
|
|
elif lSnub:
|
|
for j in range(len(i) - 1):
|
|
if x > vData[x][2][j]:
|
|
index = vData[vData[x][2][j]][2].index(x)
|
|
feOutput.append([fvOutput[x][j], fvOutput[x][j - 1],
|
|
fvOutput[vData[x][2][j]][index - 1]])
|
|
feOutput.append([fvOutput[x][j - 1], fvOutput[vData[x][2][j]][index],
|
|
fvOutput[vData[x][2][j]][index - 1]])
|
|
# special rules for birectified mesh (v1 todo: done)
|
|
elif vtrunc == 0.5:
|
|
for j in range(len(i) - 1):
|
|
if x < vData[x][2][j]: # use current vert, since other one has not passed yet
|
|
vOutput.append(vData[x][0][j])
|
|
fvOutput[x].append(len(vOutput) - 1)
|
|
else:
|
|
# search for other edge to avoid duplicity
|
|
connectee = vData[x][2][j]
|
|
fvOutput[x].append(fvOutput[connectee][vData[connectee][2].index(x)])
|
|
else: # vert truncation only
|
|
vOutput.extend(vData[x][0]) # use generated verts from way above
|
|
for j in range(len(i) - 1): # create face from them
|
|
fvOutput[x].append(fOffset + j)
|
|
|
|
# calculate supposed vertex length to ensure continuity
|
|
if supposedSize and not dual: # this to make the vtrunc > 1 work
|
|
supposedSize *= len(fvOutput[0]) / vSum(vOutput[i] for i in fvOutput[0]).length
|
|
vOutput = [-i * supposedSize for i in vOutput]
|
|
# Inverting vOutput turns the mesh inside-out, so normals need to be flipped.
|
|
flipNormals = True
|
|
else:
|
|
flipNormals = False
|
|
|
|
# create new faces by replacing old vert IDs by newly generated verts
|
|
ffOutput = [[] for i in fInput]
|
|
for x in range(len(fInput)):
|
|
# only one generated vert per vertex, so choose accordingly
|
|
if etrunc == 0.5 or (etrunc == 0 and vtrunc == 0.5) or lSnub or rSnub:
|
|
ffOutput[x] = [fvOutput[i][vData[i][3].index(x) - 1] for i in fInput[x]]
|
|
# two generated verts per vertex
|
|
elif etrunc > 0:
|
|
for i in fInput[x]:
|
|
ffOutput[x].append(fvOutput[i][2 * vData[i][3].index(x) - 1])
|
|
ffOutput[x].append(fvOutput[i][2 * vData[i][3].index(x) - 2])
|
|
else: # cutting off corners also makes 2 verts
|
|
for i in fInput[x]:
|
|
ffOutput[x].append(fvOutput[i][vData[i][3].index(x)])
|
|
ffOutput[x].append(fvOutput[i][vData[i][3].index(x) - 1])
|
|
|
|
if not dual:
|
|
fOutput = fvOutput + feOutput + ffOutput
|
|
if flipNormals:
|
|
fOutput = flippedFaceNormals(fOutput)
|
|
return vOutput, fOutput
|
|
else:
|
|
# do the same procedure as above, only now on the generated mesh
|
|
# generate connection database
|
|
vDict = [{} for i in vOutput]
|
|
dvOutput = [0 for i in fvOutput + feOutput + ffOutput]
|
|
dfOutput = []
|
|
|
|
for x in range(len(dvOutput)): # for every face
|
|
i = (fvOutput + feOutput + ffOutput)[x] # choose face to work with
|
|
# find vertex from face
|
|
normal = (vOutput[i[0]] - vOutput[i[1]]).cross(vOutput[i[2]] - vOutput[i[1]]).normalized()
|
|
dvOutput[x] = normal / (normal.dot(vOutput[i[0]]))
|
|
for j in range(len(i)): # create vert chain
|
|
vDict[i[j - 1]][i[j]] = [i[j - 2], x]
|
|
if len(vDict[i[j - 1]]) == 1:
|
|
vDict[i[j - 1]][-1] = i[j]
|
|
|
|
# calculate supposed size for continuity
|
|
supposedSize = vSum([vInput[i] for i in fInput[0]]).length / len(fInput[0])
|
|
supposedSize /= dvOutput[-1].length
|
|
dvOutput = [i * supposedSize for i in dvOutput]
|
|
|
|
# use chains to create faces
|
|
for x in range(len(vOutput)):
|
|
i = vDict[x]
|
|
current = i[-1]
|
|
face = []
|
|
while True:
|
|
face.append(i[current][1])
|
|
current = i[current][0]
|
|
if current == i[-1]:
|
|
break
|
|
dfOutput.append(face)
|
|
|
|
return dvOutput, dfOutput
|
|
|
|
|
|
class Solids(bpy.types.Operator):
|
|
"""Add one of the (regular) solids (mesh)"""
|
|
bl_idname = "mesh.primitive_solid_add"
|
|
bl_label = "(Regular) solids"
|
|
bl_description = "Add one of the Platonic, Archimedean or Catalan solids"
|
|
bl_options = {'REGISTER', 'UNDO', 'PRESET'}
|
|
|
|
source: EnumProperty(
|
|
items=(("4", "Tetrahedron", ""),
|
|
("6", "Hexahedron", ""),
|
|
("8", "Octahedron", ""),
|
|
("12", "Dodecahedron", ""),
|
|
("20", "Icosahedron", "")),
|
|
name="Source",
|
|
description="Starting point of your solid"
|
|
)
|
|
size: FloatProperty(
|
|
name="Size",
|
|
description="Radius of the sphere through the vertices",
|
|
min=0.01,
|
|
soft_min=0.01,
|
|
max=100,
|
|
soft_max=100,
|
|
default=1.0
|
|
)
|
|
vTrunc: FloatProperty(
|
|
name="Vertex Truncation",
|
|
description="Amount of vertex truncation",
|
|
min=0.0,
|
|
soft_min=0.0,
|
|
max=2.0,
|
|
soft_max=2.0,
|
|
default=0.0,
|
|
precision=3,
|
|
step=0.5
|
|
)
|
|
eTrunc: FloatProperty(
|
|
name="Edge Truncation",
|
|
description="Amount of edge truncation",
|
|
min=0.0,
|
|
soft_min=0.0,
|
|
max=1.0,
|
|
soft_max=1.0,
|
|
default=0.0,
|
|
precision=3,
|
|
step=0.2
|
|
)
|
|
snub: EnumProperty(
|
|
items=(("None", "No Snub", ""),
|
|
("Left", "Left Snub", ""),
|
|
("Right", "Right Snub", "")),
|
|
name="Snub",
|
|
description="Create the snub version"
|
|
)
|
|
dual: BoolProperty(
|
|
name="Dual",
|
|
description="Create the dual of the current solid",
|
|
default=False
|
|
)
|
|
keepSize: BoolProperty(
|
|
name="Keep Size",
|
|
description="Keep the whole solid at a constant size",
|
|
default=False
|
|
)
|
|
preset: EnumProperty(
|
|
items=(("0", "Custom", ""),
|
|
("t4", "Truncated Tetrahedron", ""),
|
|
("r4", "Cuboctahedron", ""),
|
|
("t6", "Truncated Cube", ""),
|
|
("t8", "Truncated Octahedron", ""),
|
|
("b6", "Rhombicuboctahedron", ""),
|
|
("c6", "Truncated Cuboctahedron", ""),
|
|
("s6", "Snub Cube", ""),
|
|
("r12", "Icosidodecahedron", ""),
|
|
("t12", "Truncated Dodecahedron", ""),
|
|
("t20", "Truncated Icosahedron", ""),
|
|
("b12", "Rhombicosidodecahedron", ""),
|
|
("c12", "Truncated Icosidodecahedron", ""),
|
|
("s12", "Snub Dodecahedron", ""),
|
|
("dt4", "Triakis Tetrahedron", ""),
|
|
("dr4", "Rhombic Dodecahedron", ""),
|
|
("dt6", "Triakis Octahedron", ""),
|
|
("dt8", "Tetrakis Hexahedron", ""),
|
|
("db6", "Deltoidal Icositetrahedron", ""),
|
|
("dc6", "Disdyakis Dodecahedron", ""),
|
|
("ds6", "Pentagonal Icositetrahedron", ""),
|
|
("dr12", "Rhombic Triacontahedron", ""),
|
|
("dt12", "Triakis Icosahedron", ""),
|
|
("dt20", "Pentakis Dodecahedron", ""),
|
|
("db12", "Deltoidal Hexecontahedron", ""),
|
|
("dc12", "Disdyakis Triacontahedron", ""),
|
|
("ds12", "Pentagonal Hexecontahedron", "")),
|
|
name="Presets",
|
|
description="Parameters for some hard names"
|
|
)
|
|
|
|
# actual preset values
|
|
p = {"t4": ["4", 2 / 3, 0, 0, "None"],
|
|
"r4": ["4", 1, 1, 0, "None"],
|
|
"t6": ["6", 2 / 3, 0, 0, "None"],
|
|
"t8": ["8", 2 / 3, 0, 0, "None"],
|
|
"b6": ["6", 1.0938, 1, 0, "None"],
|
|
"c6": ["6", 1.0572, 0.585786, 0, "None"],
|
|
"s6": ["6", 1.0875, 0.704, 0, "Left"],
|
|
"r12": ["12", 1, 0, 0, "None"],
|
|
"t12": ["12", 2 / 3, 0, 0, "None"],
|
|
"t20": ["20", 2 / 3, 0, 0, "None"],
|
|
"b12": ["12", 1.1338, 1, 0, "None"],
|
|
"c12": ["20", 0.921, 0.553, 0, "None"],
|
|
"s12": ["12", 1.1235, 0.68, 0, "Left"],
|
|
"dt4": ["4", 2 / 3, 0, 1, "None"],
|
|
"dr4": ["4", 1, 1, 1, "None"],
|
|
"dt6": ["6", 2 / 3, 0, 1, "None"],
|
|
"dt8": ["8", 2 / 3, 0, 1, "None"],
|
|
"db6": ["6", 1.0938, 1, 1, "None"],
|
|
"dc6": ["6", 1.0572, 0.585786, 1, "None"],
|
|
"ds6": ["6", 1.0875, 0.704, 1, "Left"],
|
|
"dr12": ["12", 1, 0, 1, "None"],
|
|
"dt12": ["12", 2 / 3, 0, 1, "None"],
|
|
"dt20": ["20", 2 / 3, 0, 1, "None"],
|
|
"db12": ["12", 1.1338, 1, 1, "None"],
|
|
"dc12": ["20", 0.921, 0.553, 1, "None"],
|
|
"ds12": ["12", 1.1235, 0.68, 1, "Left"]}
|
|
|
|
# previous preset, for User-friendly reasons
|
|
previousSetting = ""
|
|
|
|
def execute(self, context):
|
|
# piece of code to make presets remain until parameters are changed
|
|
if self.preset != "0":
|
|
# if preset, set preset
|
|
if self.previousSetting != self.preset:
|
|
using = self.p[self.preset]
|
|
self.source = using[0]
|
|
self.vTrunc = using[1]
|
|
self.eTrunc = using[2]
|
|
self.dual = using[3]
|
|
self.snub = using[4]
|
|
else:
|
|
using = self.p[self.preset]
|
|
result0 = self.source == using[0]
|
|
result1 = abs(self.vTrunc - using[1]) < 0.004
|
|
result2 = abs(self.eTrunc - using[2]) < 0.0015
|
|
result4 = using[4] == self.snub or ((using[4] == "Left") and
|
|
self.snub in ["Left", "Right"])
|
|
if (result0 and result1 and result2 and result4):
|
|
if self.p[self.previousSetting][3] != self.dual:
|
|
if self.preset[0] == "d":
|
|
self.preset = self.preset[1:]
|
|
else:
|
|
self.preset = "d" + self.preset
|
|
else:
|
|
self.preset = "0"
|
|
|
|
self.previousSetting = self.preset
|
|
|
|
# generate mesh
|
|
verts, faces = createSolid(self.source,
|
|
self.vTrunc,
|
|
self.eTrunc,
|
|
self.dual,
|
|
self.snub
|
|
)
|
|
|
|
# resize to normal size, or if keepSize, make sure all verts are of length 'size'
|
|
if self.keepSize:
|
|
rad = self.size / verts[-1 if self.dual else 0].length
|
|
else:
|
|
rad = self.size
|
|
verts = [i * rad for i in verts]
|
|
|
|
# generate object
|
|
# Create new mesh
|
|
mesh = bpy.data.meshes.new("Solid")
|
|
|
|
# Make a mesh from a list of verts/edges/faces.
|
|
mesh.from_pydata(verts, [], faces)
|
|
|
|
# Update mesh geometry after adding stuff.
|
|
mesh.update()
|
|
|
|
object_data_add(context, mesh, operator=None)
|
|
# object generation done
|
|
|
|
return {'FINISHED'}
|