Files
blender-addons/render_povray/render.py
2018-10-19 18:13:31 +02:00

4403 lines
222 KiB
Python

# ***** BEGIN GPL LICENSE BLOCK *****
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# #**** END GPL LICENSE BLOCK #****
# <pep8 compliant>
import bpy
import subprocess
import os
import sys
import time
from math import atan, pi, degrees, sqrt, cos, sin
import re
import random
import platform#
import subprocess#
import tempfile #generate temporary files with random names
from bpy.types import(Operator)
from imghdr import what #imghdr is a python lib to identify image file types
from . import df3 # for smoke rendering
from . import shading # for BI POV haders emulation
from . import primitives # for import and export of POV specific primitives
from . import nodes # for POV specific nodes
##############################SF###########################
##############find image texture
def imageFormat(imgF):
ext = {
'JPG': "jpeg",
'JPEG': "jpeg",
'GIF': "gif",
'TGA': "tga",
'IFF': "iff",
'PPM': "ppm",
'PNG': "png",
'SYS': "sys",
'TIFF': "tiff",
'TIF': "tiff",
'EXR': "exr",
'HDR': "hdr",
}.get(os.path.splitext(imgF)[-1].upper(), "")
if not ext:
#maybe add a check for if path exists here?
print(" WARNING: texture image has no extension") #too verbose
ext = what(imgF) #imghdr is a python lib to identify image file types
return ext
def imgMap(ts):
image_map = ""
if ts.mapping == 'FLAT':
image_map = "map_type 0 "
elif ts.mapping == 'SPHERE':
image_map = "map_type 1 "
elif ts.mapping == 'TUBE':
image_map = "map_type 2 "
## map_type 3 and 4 in development (?)
## for POV-Ray, currently they just seem to default back to Flat (type 0)
#elif ts.mapping=="?":
# image_map = " map_type 3 "
#elif ts.mapping=="?":
# image_map = " map_type 4 "
if ts.texture.use_interpolation:
image_map += " interpolate 2 "
if ts.texture.extension == 'CLIP':
image_map += " once "
#image_map += "}"
#if ts.mapping=='CUBE':
# image_map+= "warp { cubic } rotate <-90,0,180>"
# no direct cube type mapping. Though this should work in POV 3.7
# it doesn't give that good results(best suited to environment maps?)
#if image_map == "":
# print(" No texture image found ")
return image_map
def imgMapTransforms(ts):
# XXX TODO: unchecked textures give error of variable referenced before assignment XXX
# POV-Ray "scale" is not a number of repetitions factor, but ,its
# inverse, a standard scale factor.
# 0.5 Offset is needed relatively to scale because center of the
# scale is 0.5,0.5 in blender and 0,0 in POV
# Strange that the translation factor for scale is not the same as for
# translate.
# TODO: verify both matches with blender internal.
image_map_transforms = ""
image_map_transforms = ("scale <%.4g,%.4g,%.4g> translate <%.4g,%.4g,%.4g>" % \
( 1.0 / ts.scale.x,
1.0 / ts.scale.y,
1.0 / ts.scale.z,
0.5-(0.5/ts.scale.x) - (ts.offset.x),
0.5-(0.5/ts.scale.y) - (ts.offset.y),
ts.offset.z))
# image_map_transforms = (" translate <-0.5,-0.5,0.0> scale <%.4g,%.4g,%.4g> translate <%.4g,%.4g,%.4g>" % \
# ( 1.0 / ts.scale.x,
# 1.0 / ts.scale.y,
# 1.0 / ts.scale.z,
# (0.5 / ts.scale.x) + ts.offset.x,
# (0.5 / ts.scale.y) + ts.offset.y,
# ts.offset.z))
# image_map_transforms = ("translate <-0.5,-0.5,0> scale <-1,-1,1> * <%.4g,%.4g,%.4g> translate <0.5,0.5,0> + <%.4g,%.4g,%.4g>" % \
# (1.0 / ts.scale.x,
# 1.0 / ts.scale.y,
# 1.0 / ts.scale.z,
# ts.offset.x,
# ts.offset.y,
# ts.offset.z))
return image_map_transforms
def imgMapBG(wts):
image_mapBG = ""
# texture_coords refers to the mapping of world textures:
if wts.texture_coords == 'VIEW' or wts.texture_coords == 'GLOBAL':
image_mapBG = " map_type 0 "
elif wts.texture_coords == 'ANGMAP':
image_mapBG = " map_type 1 "
elif wts.texture_coords == 'TUBE':
image_mapBG = " map_type 2 "
if wts.texture.use_interpolation:
image_mapBG += " interpolate 2 "
if wts.texture.extension == 'CLIP':
image_mapBG += " once "
#image_mapBG += "}"
#if wts.mapping == 'CUBE':
# image_mapBG += "warp { cubic } rotate <-90,0,180>"
# no direct cube type mapping. Though this should work in POV 3.7
# it doesn't give that good results(best suited to environment maps?)
#if image_mapBG == "":
# print(" No background texture image found ")
return image_mapBG
def path_image(image):
return bpy.path.abspath(image.filepath, library=image.library).replace("\\","/")
# .replace("\\","/") to get only forward slashes as it's what POV prefers,
# even on windows
# end find image texture
# -----------------------------------------------------------------------------
def string_strip_hyphen(name):
return name.replace("-", "")
def safety(name, Level):
# safety string name material
#
# Level=1 is for texture with No specular nor Mirror reflection
# Level=2 is for texture with translation of spec and mir levels
# for when no map influences them
# Level=3 is for texture with Maximum Spec and Mirror
try:
if int(name) > 0:
prefix = "shader"
except:
prefix = ""
prefix = "shader_"
name = string_strip_hyphen(name)
if Level == 2:
return prefix + name
elif Level == 1:
return prefix + name + "0" # used for 0 of specular map
elif Level == 3:
return prefix + name + "1" # used for 1 of specular map
##############end safety string name material
##############################EndSF###########################
csg_list = []
def is_renderable(scene, ob):
return (ob.is_visible(scene) and not ob.hide_render and ob not in csg_list)
def renderable_objects(scene):
return [ob for ob in bpy.data.objects if is_renderable(scene, ob)]
def no_renderable_objects(scene):
return [ob for ob in csg_list]
tabLevel = 0
unpacked_images=[]
user_dir = bpy.utils.resource_path('USER')
preview_dir = os.path.join(user_dir, "preview")
## Make sure Preview directory exists and is empty
smokePath = os.path.join(preview_dir, "smoke.df3")
'''
def write_global_setting(scene,file):
file.write("global_settings {\n")
file.write(" assumed_gamma %.6f\n"%scene.pov.assumed_gamma)
if scene.pov.global_settings_advanced:
if scene.pov.radio_enable == False:
file.write(" adc_bailout %.6f\n"%scene.pov.adc_bailout)
file.write(" ambient_light <%.6f,%.6f,%.6f>\n"%scene.pov.ambient_light[:])
file.write(" irid_wavelength <%.6f,%.6f,%.6f>\n"%scene.pov.irid_wavelength[:])
file.write(" charset %s\n"%scene.pov.charset)
file.write(" max_trace_level %s\n"%scene.pov.max_trace_level)
file.write(" max_intersections %s\n"%scene.pov.max_intersections)
file.write(" number_of_waves %s\n"%scene.pov.number_of_waves)
file.write(" noise_generator %s\n"%scene.pov.noise_generator)
# below properties not added to __init__ yet to avoid conflicts with material sss scale
# unless it would override then should be interfaced also in scene units property tab
# if scene.pov.sslt_enable:
# file.write(" mm_per_unit %s\n"%scene.pov.mm_per_unit)
# file.write(" subsurface {\n")
# file.write(" samples %s, %s\n"%(scene.pov.sslt_samples_max,scene.pov.sslt_samples_min))
# if scene.pov.sslt_radiosity:
# file.write(" radiosity on\n")
# file.write("}\n")
if scene.pov.radio_enable:
file.write(" radiosity {\n")
file.write(" pretrace_start %.6f\n"%scene.pov.radio_pretrace_start)
file.write(" pretrace_end %.6f\n"%scene.pov.radio_pretrace_end)
file.write(" count %s\n"%scene.pov.radio_count)
file.write(" nearest_count %s\n"%scene.pov.radio_nearest_count)
file.write(" error_bound %.6f\n"%scene.pov.radio_error_bound)
file.write(" recursion_limit %s\n"%scene.pov.radio_recursion_limit)
file.write(" low_error_factor %.6f\n"%scene.pov.radio_low_error_factor)
file.write(" gray_threshold %.6f\n"%scene.pov.radio_gray_threshold)
file.write(" maximum_reuse %.6f\n"%scene.pov.radio_maximum_reuse)
file.write(" minimum_reuse %.6f\n"%scene.pov.radio_minimum_reuse)
file.write(" brightness %.6f\n"%scene.pov.radio_brightness)
file.write(" adc_bailout %.6f\n"%scene.pov.radio_adc_bailout)
if scene.pov.radio_normal:
file.write(" normal on\n")
if scene.pov.radio_always_sample:
file.write(" always_sample on\n")
if scene.pov.radio_media:
file.write(" media on\n")
if scene.pov.radio_subsurface:
file.write(" subsurface on\n")
file.write(" }\n")
if scene.pov.photon_enable:
file.write(" photons {\n")
if scene.pov.photon_enable_count:
file.write(" count %s\n"%scene.pov.photon_count)
else:
file.write(" spacing %.6g\n"%scene.pov.photon_spacing)
if scene.pov.photon_gather:
file.write(" gather %s, %s\n"%(scene.pov.photon_gather_min,scene.pov.photon_gather_max))
if scene.pov.photon_autostop:
file.write(" autostop %.4g\n"%scene.pov.photon_autostop_value)
if scene.pov.photon_jitter_enable:
file.write(" jitter %.4g\n"%scene.pov.photon_jitter)
file.write(" max_trace_level %s\n"%scene.pov.photon_max_trace_level)
if scene.pov.photon_adc:
file.write(" adc_bailout %.6f\n"%scene.pov.photon_adc_bailout)
if scene.pov.photon_media_enable:
file.write(" media %s, %s\n"%(scene.pov.photon_media_steps,scene.pov.photon_media_factor))
if scene.pov.photon_map_file_save_load in {'save'}:
filePhName = 'Photon_map_file.ph'
if scene.pov.photon_map_file != '':
filePhName = scene.pov.photon_map_file+'.ph'
filePhDir = tempfile.gettempdir()
path = bpy.path.abspath(scene.pov.photon_map_dir)
if os.path.exists(path):
filePhDir = path
fullFileName = os.path.join(filePhDir,filePhName)
file.write(' save_file "%s"\n'%fullFileName)
scene.pov.photon_map_file = fullFileName
if scene.pov.photon_map_file_save_load in {'load'}:
fullFileName = bpy.path.abspath(scene.pov.photon_map_file)
if os.path.exists(fullFileName):
file.write(' load_file "%s"\n'%fullFileName)
file.write("}\n")
file.write("}\n")
'''
def write_object_modifiers(scene,ob,File):
'''XXX WIP
onceCSG = 0
for mod in ob.modifiers:
if onceCSG == 0:
if mod :
if mod.type == 'BOOLEAN':
if ob.pov.boolean_mod == "POV":
File.write("\tinside_vector <%.6g, %.6g, %.6g>\n" %
(ob.pov.inside_vector[0],
ob.pov.inside_vector[1],
ob.pov.inside_vector[2]))
onceCSG = 1
'''
if ob.pov.hollow:
File.write("\thollow\n")
if ob.pov.double_illuminate:
File.write("\tdouble_illuminate\n")
if ob.pov.sturm:
File.write("\tsturm\n")
if ob.pov.no_shadow:
File.write("\tno_shadow\n")
if ob.pov.no_image:
File.write("\tno_image\n")
if ob.pov.no_reflection:
File.write("\tno_reflection\n")
if ob.pov.no_radiosity:
File.write("\tno_radiosity\n")
if ob.pov.inverse:
File.write("\tinverse\n")
if ob.pov.hierarchy:
File.write("\thierarchy\n")
# XXX, Commented definitions
'''
if scene.pov.photon_enable:
File.write("photons {\n")
if ob.pov.target:
File.write("target %.4g\n"%ob.pov.target_value)
if ob.pov.refraction:
File.write("refraction on\n")
if ob.pov.reflection:
File.write("reflection on\n")
if ob.pov.pass_through:
File.write("pass_through\n")
File.write("}\n")
if ob.pov.object_ior > 1:
File.write("interior {\n")
File.write("ior %.4g\n"%ob.pov.object_ior)
if scene.pov.photon_enable and ob.pov.target and ob.pov.refraction and ob.pov.dispersion:
File.write("ior %.4g\n"%ob.pov.dispersion_value)
File.write("ior %s\n"%ob.pov.dispersion_samples)
if scene.pov.photon_enable == False:
File.write("caustics %.4g\n"%ob.pov.fake_caustics_power)
'''
def write_pov(filename, scene=None, info_callback=None):
import mathutils
#file = filename
file = open(filename, "w")
# Only for testing
if not scene:
scene = bpy.data.scenes[0]
render = scene.render
world = scene.world
global_matrix = mathutils.Matrix.Rotation(-pi / 2.0, 4, 'X')
comments = scene.pov.comments_enable and not scene.pov.tempfiles_enable
linebreaksinlists = scene.pov.list_lf_enable and not scene.pov.tempfiles_enable
feature_set = bpy.context.user_preferences.addons[__package__].preferences.branch_feature_set_povray
using_uberpov = (feature_set=='uberpov')
pov_binary = PovrayRender._locate_binary()
if using_uberpov:
print("Unofficial UberPOV feature set chosen in preferences")
else:
print("Official POV-Ray 3.7 feature set chosen in preferences")
if 'uber' in pov_binary:
print("The name of the binary suggests you are probably rendering with Uber POV engine")
else:
print("The name of the binary suggests you are probably rendering with standard POV engine")
def setTab(tabtype, spaces):
TabStr = ""
if tabtype == 'NONE':
TabStr = ""
elif tabtype == 'TAB':
TabStr = "\t"
elif tabtype == 'SPACE':
TabStr = spaces * " "
return TabStr
tab = setTab(scene.pov.indentation_character, scene.pov.indentation_spaces)
if not scene.pov.tempfiles_enable:
def tabWrite(str_o):
global tabLevel
brackets = str_o.count("{") - str_o.count("}") + str_o.count("[") - str_o.count("]")
if brackets < 0:
tabLevel = tabLevel + brackets
if tabLevel < 0:
print("Indentation Warning: tabLevel = %s" % tabLevel)
tabLevel = 0
if tabLevel >= 1:
file.write("%s" % tab * tabLevel)
file.write(str_o)
if brackets > 0:
tabLevel = tabLevel + brackets
else:
def tabWrite(str_o):
file.write(str_o)
def uniqueName(name, nameSeq):
if name not in nameSeq:
name = string_strip_hyphen(name)
return name
name_orig = name
i = 1
while name in nameSeq:
name = "%s_%.3d" % (name_orig, i)
i += 1
name = string_strip_hyphen(name)
return name
def writeMatrix(matrix):
tabWrite("matrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n" %
(matrix[0][0], matrix[1][0], matrix[2][0],
matrix[0][1], matrix[1][1], matrix[2][1],
matrix[0][2], matrix[1][2], matrix[2][2],
matrix[0][3], matrix[1][3], matrix[2][3]))
def MatrixAsPovString(matrix):
sMatrix = ("matrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n" %
(matrix[0][0], matrix[1][0], matrix[2][0],
matrix[0][1], matrix[1][1], matrix[2][1],
matrix[0][2], matrix[1][2], matrix[2][2],
matrix[0][3], matrix[1][3], matrix[2][3]))
return sMatrix
def writeObjectMaterial(material, ob):
# DH - modified some variables to be function local, avoiding RNA write
# this should be checked to see if it is functionally correct
# Commented out: always write IOR to be able to use it for SSS, Fresnel reflections...
#if material and material.transparency_method == 'RAYTRACE':
if material:
# But there can be only one!
if material.subsurface_scattering.use: # SSS IOR get highest priority
tabWrite("interior {\n")
tabWrite("ior %.6f\n" % material.subsurface_scattering.ior)
# Then the raytrace IOR taken from raytrace transparency properties and used for
# reflections if IOR Mirror option is checked.
elif material.pov.mirror_use_IOR:
tabWrite("interior {\n")
tabWrite("ior %.6f\n" % material.raytrace_transparency.ior)
else:
tabWrite("interior {\n")
tabWrite("ior %.6f\n" % material.raytrace_transparency.ior)
pov_fake_caustics = False
pov_photons_refraction = False
pov_photons_reflection = False
if material.pov.photons_reflection:
pov_photons_reflection = True
if not material.pov.refraction_caustics:
pov_fake_caustics = False
pov_photons_refraction = False
elif material.pov.refraction_type == "1":
pov_fake_caustics = True
pov_photons_refraction = False
elif material.pov.refraction_type == "2":
pov_fake_caustics = False
pov_photons_refraction = True
# If only Raytrace transparency is set, its IOR will be used for refraction, but user
# can set up 'un-physical' fresnel reflections in raytrace mirror parameters.
# Last, if none of the above is specified, user can set up 'un-physical' fresnel
# reflections in raytrace mirror parameters. And pov IOR defaults to 1.
if material.pov.caustics_enable:
if pov_fake_caustics:
tabWrite("caustics %.3g\n" % material.pov.fake_caustics_power)
if pov_photons_refraction:
# Default of 1 means no dispersion
tabWrite("dispersion %.6f\n" % material.pov.photons_dispersion)
tabWrite("dispersion_samples %.d\n" % material.pov.photons_dispersion_samples)
#TODO
# Other interior args
if material.use_transparency and material.transparency_method == 'RAYTRACE':
# fade_distance
# In Blender this value has always been reversed compared to what tooltip says.
# 100.001 rather than 100 so that it does not get to 0
# which deactivates the feature in POV
tabWrite("fade_distance %.3g\n" % \
(100.001 - material.raytrace_transparency.depth_max))
# fade_power
tabWrite("fade_power %.3g\n" % material.raytrace_transparency.falloff)
# fade_color
tabWrite("fade_color <%.3g, %.3g, %.3g>\n" % material.pov.interior_fade_color[:])
# (variable) dispersion_samples (constant count for now)
tabWrite("}\n")
if material.pov.photons_reflection or material.pov.refraction_type=="2":
tabWrite("photons{")
tabWrite("target %.3g\n" % ob.pov.spacing_multiplier)
if not ob.pov.collect_photons:
tabWrite("collect off\n")
if pov_photons_refraction:
tabWrite("refraction on\n")
if pov_photons_reflection:
tabWrite("reflection on\n")
tabWrite("}\n")
materialNames = {}
DEF_MAT_NAME = "" #or "Default"?
def exportCamera():
camera = scene.camera
# DH disabled for now, this isn't the correct context
active_object = None # bpy.context.active_object # does not always work MR
matrix = global_matrix * camera.matrix_world
focal_point = camera.data.dof_distance
# compute resolution
Qsize = render.resolution_x / render.resolution_y
tabWrite("#declare camLocation = <%.6f, %.6f, %.6f>;\n" %
matrix.translation[:])
tabWrite("#declare camLookAt = <%.6f, %.6f, %.6f>;\n" %
tuple([degrees(e) for e in matrix.to_3x3().to_euler()]))
tabWrite("camera {\n")
if scene.pov.baking_enable and active_object and active_object.type == 'MESH':
tabWrite("mesh_camera{ 1 3\n") # distribution 3 is what we want here
tabWrite("mesh{%s}\n" % active_object.name)
tabWrite("}\n")
tabWrite("location <0,0,.01>")
tabWrite("direction <0,0,-1>")
# Using standard camera otherwise
else:
tabWrite("location <0, 0, 0>\n")
tabWrite("look_at <0, 0, -1>\n")
tabWrite("right <%s, 0, 0>\n" % - Qsize)
tabWrite("up <0, 1, 0>\n")
tabWrite("angle %f\n" % (360.0 * atan(16.0 / camera.data.lens) / pi))
tabWrite("rotate <%.6f, %.6f, %.6f>\n" % \
tuple([degrees(e) for e in matrix.to_3x3().to_euler()]))
tabWrite("translate <%.6f, %.6f, %.6f>\n" % matrix.translation[:])
if camera.data.pov.dof_enable and (focal_point != 0 or camera.data.dof_object):
tabWrite("aperture %.3g\n" % camera.data.pov.dof_aperture)
tabWrite("blur_samples %d %d\n" % \
(camera.data.pov.dof_samples_min, camera.data.pov.dof_samples_max))
tabWrite("variance 1/%d\n" % camera.data.pov.dof_variance)
tabWrite("confidence %.3g\n" % camera.data.pov.dof_confidence)
if camera.data.dof_object:
focalOb = scene.objects[camera.data.dof_object.name]
matrixBlur = global_matrix * focalOb.matrix_world
tabWrite("focal_point <%.4f,%.4f,%.4f>\n"% matrixBlur.translation[:])
else:
tabWrite("focal_point <0, 0, %f>\n" % focal_point)
if camera.data.pov.normal_enable:
tabWrite("normal {%s %.4f turbulence %.4f scale %.4f}\n"%
(camera.data.pov.normal_patterns,
camera.data.pov.cam_normal,
camera.data.pov.turbulence,
camera.data.pov.scale))
tabWrite("}\n")
def exportLamps(lamps):
# Incremented after each lamp export to declare its target
# currently used for Fresnel diffuse shader as their slope vector:
global lampCount
lampCount = 0
# Get all lamps
for ob in lamps:
lamp = ob.data
matrix = global_matrix * ob.matrix_world
# Color is modified by energy #multiplied by 2 for a better match --Maurice
color = tuple([c * (lamp.energy) for c in lamp.color])
tabWrite("light_source {\n")
tabWrite("< 0,0,0 >\n")
tabWrite("color srgb<%.3g, %.3g, %.3g>\n" % color)
if lamp.type == 'POINT':
pass
elif lamp.type == 'SPOT':
tabWrite("spotlight\n")
# Falloff is the main radius from the centre line
tabWrite("falloff %.2f\n" % (degrees(lamp.spot_size) / 2.0)) # 1 TO 179 FOR BOTH
tabWrite("radius %.6f\n" % \
((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend)))
# Blender does not have a tightness equivalent, 0 is most like blender default.
tabWrite("tightness 0\n") # 0:10f
tabWrite("point_at <0, 0, -1>\n")
if lamp.use_halo:
tabWrite("looks_like{\n")
tabWrite("sphere{<0,0,0>,%.6f\n" %lamp.distance)
tabWrite("hollow\n")
tabWrite("material{\n")
tabWrite("texture{\n")
tabWrite("pigment{rgbf<1,1,1,%.4f>}\n" % (lamp.halo_intensity*5.0))
tabWrite("}\n")
tabWrite("interior{\n")
tabWrite("media{\n")
tabWrite("emission 1\n")
tabWrite("scattering {1, 0.5}\n")
tabWrite("density{\n")
tabWrite("spherical\n")
tabWrite("color_map{\n")
tabWrite("[0.0 rgb <0,0,0>]\n")
tabWrite("[0.5 rgb <1,1,1>]\n")
tabWrite("[1.0 rgb <1,1,1>]\n")
tabWrite("}\n")
tabWrite("}\n")
tabWrite("}\n")
tabWrite("}\n")
tabWrite("}\n")
tabWrite("}\n")
tabWrite("}\n")
elif lamp.type == 'SUN':
tabWrite("parallel\n")
tabWrite("point_at <0, 0, -1>\n") # *must* be after 'parallel'
elif lamp.type == 'AREA':
tabWrite("fade_distance %.6f\n" % (lamp.distance / 2.0))
# Area lights have no falloff type, so always use blenders lamp quad equivalent
# for those?
tabWrite("fade_power %d\n" % 2)
size_x = lamp.size
samples_x = lamp.shadow_ray_samples_x
if lamp.shape == 'SQUARE':
size_y = size_x
samples_y = samples_x
else:
size_y = lamp.size_y
samples_y = lamp.shadow_ray_samples_y
tabWrite("area_light <%.6f,0,0>,<0,%.6f,0> %d, %d\n" % \
(size_x, size_y, samples_x, samples_y))
tabWrite("area_illumination\n")
if lamp.shadow_ray_sample_method == 'CONSTANT_JITTERED':
if lamp.use_jitter:
tabWrite("jitter\n")
else:
tabWrite("adaptive 1\n")
tabWrite("jitter\n")
# HEMI never has any shadow_method attribute
if(not scene.render.use_shadows or lamp.type == 'HEMI' or
(lamp.type != 'HEMI' and lamp.shadow_method == 'NOSHADOW')):
tabWrite("shadowless\n")
# Sun shouldn't be attenuated. Hemi and area lights have no falloff attribute so they
# are put to type 2 attenuation a little higher above.
if lamp.type not in {'SUN', 'AREA', 'HEMI'}:
if lamp.falloff_type == 'INVERSE_SQUARE':
tabWrite("fade_distance %.6f\n" % (sqrt(lamp.distance/2.0)))
tabWrite("fade_power %d\n" % 2) # Use blenders lamp quad equivalent
elif lamp.falloff_type == 'INVERSE_LINEAR':
tabWrite("fade_distance %.6f\n" % (lamp.distance / 2.0))
tabWrite("fade_power %d\n" % 1) # Use blenders lamp linear
elif lamp.falloff_type == 'CONSTANT':
tabWrite("fade_distance %.6f\n" % (lamp.distance / 2.0))
tabWrite("fade_power %d\n" % 3)
# Use blenders lamp constant equivalent no attenuation.
# Using Custom curve for fade power 3 for now.
elif lamp.falloff_type == 'CUSTOM_CURVE':
tabWrite("fade_power %d\n" % 4)
writeMatrix(matrix)
tabWrite("}\n")
lampCount += 1
# v(A,B) rotates vector A about origin by vector B.
file.write("#declare lampTarget%s= vrotate(<%.4g,%.4g,%.4g>,<%.4g,%.4g,%.4g>);\n" % \
(lampCount, -(ob.location.x), -(ob.location.y), -(ob.location.z),
ob.rotation_euler.x, ob.rotation_euler.y, ob.rotation_euler.z))
####################################################################################################
def exportRainbows(rainbows):
for ob in rainbows:
povdataname = ob.data.name #enough?
angle = degrees(ob.data.spot_size/2.5) #radians in blender (2
width = ob.data.spot_blend *10
distance = ob.data.shadow_buffer_clip_start
#eps=0.0000001
#angle = br/(cr+eps) * 10 #eps is small epsilon variable to avoid dividing by zero
#width = ob.dimensions[2] #now let's say width of rainbow is the actual proxy height
# formerly:
#cz-bz # let's say width of the rainbow is height of the cone (interfacing choice
# v(A,B) rotates vector A about origin by vector B.
# and avoid a 0 length vector by adding 1
# file.write("#declare %s_Target= vrotate(<%.6g,%.6g,%.6g>,<%.4g,%.4g,%.4g>);\n" % \
# (povdataname, -(ob.location.x+0.1), -(ob.location.y+0.1), -(ob.location.z+0.1),
# ob.rotation_euler.x, ob.rotation_euler.y, ob.rotation_euler.z))
direction = (ob.location.x,ob.location.y,ob.location.z) # not taking matrix into account
rmatrix = global_matrix * ob.matrix_world
#ob.rotation_euler.to_matrix().to_4x4() * mathutils.Vector((0,0,1))
# XXX Is result of the below offset by 90 degrees?
up =ob.matrix_world.to_3x3()[1].xyz #* global_matrix
# XXX TO CHANGE:
#formerly:
#tabWrite("#declare %s = rainbow {\n"%povdataname)
# clumsy for now but remove the rainbow from instancing
# system because not an object. use lamps later instead of meshes
#del data_ref[dataname]
tabWrite("rainbow {\n")
tabWrite("angle %.4f\n"%angle)
tabWrite("width %.4f\n"%width)
tabWrite("distance %.4f\n"%distance)
tabWrite("arc_angle %.4f\n"%ob.pov.arc_angle)
tabWrite("falloff_angle %.4f\n"%ob.pov.falloff_angle)
tabWrite("direction <%.4f,%.4f,%.4f>\n"%rmatrix.translation[:])
tabWrite("up <%.4f,%.4f,%.4f>\n"%(up[0],up[1],up[2]))
tabWrite("color_map {\n")
tabWrite("[0.000 color srgbt<1.0, 0.5, 1.0, 1.0>]\n")
tabWrite("[0.130 color srgbt<0.5, 0.5, 1.0, 0.9>]\n")
tabWrite("[0.298 color srgbt<0.2, 0.2, 1.0, 0.7>]\n")
tabWrite("[0.412 color srgbt<0.2, 1.0, 1.0, 0.4>]\n")
tabWrite("[0.526 color srgbt<0.2, 1.0, 0.2, 0.4>]\n")
tabWrite("[0.640 color srgbt<1.0, 1.0, 0.2, 0.4>]\n")
tabWrite("[0.754 color srgbt<1.0, 0.5, 0.2, 0.6>]\n")
tabWrite("[0.900 color srgbt<1.0, 0.2, 0.2, 0.7>]\n")
tabWrite("[1.000 color srgbt<1.0, 0.2, 0.2, 1.0>]\n")
tabWrite("}\n")
povMatName = "Default_texture"
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
#matrix = global_matrix * ob.matrix_world
#writeMatrix(matrix)
tabWrite("}\n")
#continue #Don't render proxy mesh, skip to next object
################################XXX LOFT, ETC.
def exportCurves(scene, ob):
name_orig = "OB" + ob.name
dataname_orig = "DATA" + ob.data.name
name = string_strip_hyphen(bpy.path.clean_name(name_orig))
dataname = string_strip_hyphen(bpy.path.clean_name(dataname_orig))
global_matrix = mathutils.Matrix.Rotation(-pi / 2.0, 4, 'X')
matrix=global_matrix*ob.matrix_world
bezier_sweep = False
if ob.pov.curveshape == 'sphere_sweep':
#inlined spheresweep macro, which itself calls Shapes.inc:
file.write(' #include "shapes.inc"\n')
file.write(' #macro Shape_Bezierpoints_Sphere_Sweep(_merge_shape, _resolution, _points_array, _radius_array)\n')
file.write(' //input adjusting and inspection\n')
file.write(' #if(_resolution <= 1)\n')
file.write(' #local res = 1;\n')
file.write(' #else\n')
file.write(' #local res = int(_resolution);\n')
file.write(' #end\n')
file.write(' #if(dimensions(_points_array) != 1 | dimensions(_radius_array) != 1)\n')
file.write(' #error ""\n')
file.write(' #elseif(div(dimension_size(_points_array,1),4) - dimension_size(_points_array,1)/4 != 0)\n')
file.write(' #error ""\n')
file.write(' #elseif(dimension_size(_points_array,1) != dimension_size(_radius_array,1))\n')
file.write(' #error ""\n')
file.write(' #else\n')
file.write(' #local n_of_seg = div(dimension_size(_points_array,1), 4);\n')
file.write(' #local ctrl_pts_array = array[n_of_seg]\n')
file.write(' #local ctrl_rs_array = array[n_of_seg]\n')
file.write(' #for(i, 0, n_of_seg-1)\n')
file.write(' #local ctrl_pts_array[i] = array[4] {_points_array[4*i], _points_array[4*i+1], _points_array[4*i+2], _points_array[4*i+3]}\n')
file.write(' #local ctrl_rs_array[i] = array[4] {abs(_radius_array[4*i]), abs(_radius_array[4*i+1]), abs(_radius_array[4*i+2]), abs(_radius_array[4*i+3])}\n')
file.write(' #end\n')
file.write(' #end\n')
file.write(' //drawing\n')
file.write(' #local mockup1 =\n')
file.write(' #if(_merge_shape) merge{ #else union{ #end\n')
file.write(' #for(i, 0, n_of_seg-1)\n')
file.write(' #local has_head = true;\n')
file.write(' #if(i = 0)\n')
file.write(' #if(vlength(ctrl_pts_array[i][0]-ctrl_pts_array[n_of_seg-1][3]) = 0 & ctrl_rs_array[i][0]-ctrl_rs_array[n_of_seg-1][3] <= 0)\n')
file.write(' #local has_head = false;\n')
file.write(' #end\n')
file.write(' #else\n')
file.write(' #if(vlength(ctrl_pts_array[i][0]-ctrl_pts_array[i-1][3]) = 0 & ctrl_rs_array[i][0]-ctrl_rs_array[i-1][3] <= 0)\n')
file.write(' #local has_head = false;\n')
file.write(' #end\n')
file.write(' #end\n')
file.write(' #if(has_head = true)\n')
file.write(' sphere{\n')
file.write(' ctrl_pts_array[i][0], ctrl_rs_array[i][0]\n')
file.write(' }\n')
file.write(' #end\n')
file.write(' #local para_t = (1/2)/res;\n')
file.write(' #local this_point = ctrl_pts_array[i][0]*pow(1-para_t,3) + ctrl_pts_array[i][1]*3*pow(1-para_t,2)*para_t + ctrl_pts_array[i][2]*3*(1-para_t)*pow(para_t,2) + ctrl_pts_array[i][3]*pow(para_t,3);\n')
file.write(' #local this_radius = ctrl_rs_array[i][0]*pow(1-para_t,3) + ctrl_rs_array[i][1]*3*pow(1-para_t,2)*para_t + ctrl_rs_array[i][2]*3*(1-para_t)*pow(para_t,2) + ctrl_rs_array[i][3]*pow(para_t,3);\n')
file.write(' #if(vlength(this_point-ctrl_pts_array[i][0]) > abs(this_radius-ctrl_rs_array[i][0]))\n')
file.write(' object{\n')
file.write(' Connect_Spheres(ctrl_pts_array[i][0], ctrl_rs_array[i][0], this_point, this_radius)\n')
file.write(' }\n')
file.write(' #end\n')
file.write(' sphere{\n')
file.write(' this_point, this_radius\n')
file.write(' }\n')
file.write(' #for(j, 1, res-1)\n')
file.write(' #local last_point = this_point;\n')
file.write(' #local last_radius = this_radius;\n')
file.write(' #local para_t = (1/2+j)/res;\n')
file.write(' #local this_point = ctrl_pts_array[i][0]*pow(1-para_t,3) + ctrl_pts_array[i][1]*3*pow(1-para_t,2)*para_t + ctrl_pts_array[i][2]*3*(1-para_t)*pow(para_t,2) + ctrl_pts_array[i][3]*pow(para_t,3);\n')
file.write(' #local this_radius = ctrl_rs_array[i][0]*pow(1-para_t,3) + ctrl_rs_array[i][1]*3*pow(1-para_t,2)*para_t + ctrl_rs_array[i][2]*3*(1-para_t)*pow(para_t,2) + ctrl_rs_array[i][3]*pow(para_t,3);\n')
file.write(' #if(vlength(this_point-last_point) > abs(this_radius-last_radius))\n')
file.write(' object{\n')
file.write(' Connect_Spheres(last_point, last_radius, this_point, this_radius)\n')
file.write(' }\n')
file.write(' #end\n')
file.write(' sphere{\n')
file.write(' this_point, this_radius\n')
file.write(' }\n')
file.write(' #end\n')
file.write(' #local last_point = this_point;\n')
file.write(' #local last_radius = this_radius;\n')
file.write(' #local this_point = ctrl_pts_array[i][3];\n')
file.write(' #local this_radius = ctrl_rs_array[i][3];\n')
file.write(' #if(vlength(this_point-last_point) > abs(this_radius-last_radius))\n')
file.write(' object{\n')
file.write(' Connect_Spheres(last_point, last_radius, this_point, this_radius)\n')
file.write(' }\n')
file.write(' #end\n')
file.write(' sphere{\n')
file.write(' this_point, this_radius\n')
file.write(' }\n')
file.write(' #end\n')
file.write(' }\n')
file.write(' mockup1\n')
file.write(' #end\n')
for spl in ob.data.splines:
if spl.type == "BEZIER":
bezier_sweep = True
if ob.pov.curveshape in {'loft','birail'}:
n=0
for spline in ob.data.splines:
n+=1
tabWrite('#declare %s%s=spline {\n'%(dataname,n))
tabWrite('cubic_spline\n')
lp = len(spline.points)
delta = 1/(lp)
d=-delta
point = spline.points[lp-1]
x,y,z,w = point.co[:]
tabWrite('%.6f, <%.6f,%.6f,%.6f>\n'%(d,x,y,z))
d+=delta
for point in spline.points:
x,y,z,w = point.co[:]
tabWrite('%.6f, <%.6f,%.6f,%.6f>\n'%(d,x,y,z))
d+=delta
for i in range(2):
point = spline.points[i]
x,y,z,w = point.co[:]
tabWrite('%.6f, <%.6f,%.6f,%.6f>\n'%(d,x,y,z))
d+=delta
tabWrite('}\n')
if ob.pov.curveshape in {'loft'}:
n = len(ob.data.splines)
tabWrite('#declare %s = array[%s]{\n'%(dataname,(n+3)))
tabWrite('spline{%s%s},\n'%(dataname,n))
for i in range(n):
tabWrite('spline{%s%s},\n'%(dataname,(i+1)))
tabWrite('spline{%s1},\n'%(dataname))
tabWrite('spline{%s2}\n'%(dataname))
tabWrite('}\n')
# Use some of the Meshmaker.inc macro, here inlined
file.write('#macro CheckFileName(FileName)\n')
file.write(' #local Len=strlen(FileName);\n')
file.write(' #if(Len>0)\n')
file.write(' #if(file_exists(FileName))\n')
file.write(' #if(Len>=4)\n')
file.write(' #local Ext=strlwr(substr(FileName,Len-3,4))\n')
file.write(' #if (strcmp(Ext,".obj")=0 | strcmp(Ext,".pcm")=0 | strcmp(Ext,".arr")=0)\n')
file.write(' #local Return=99;\n')
file.write(' #else\n')
file.write(' #local Return=0;\n')
file.write(' #end\n')
file.write(' #else\n')
file.write(' #local Return=0;\n')
file.write(' #end\n')
file.write(' #else\n')
file.write(' #if(Len>=4)\n')
file.write(' #local Ext=strlwr(substr(FileName,Len-3,4))\n')
file.write(' #if (strcmp(Ext,".obj")=0 | strcmp(Ext,".pcm")=0 | strcmp(Ext,".arr")=0)\n')
file.write(' #if (strcmp(Ext,".obj")=0)\n')
file.write(' #local Return=2;\n')
file.write(' #end\n')
file.write(' #if (strcmp(Ext,".pcm")=0)\n')
file.write(' #local Return=3;\n')
file.write(' #end\n')
file.write(' #if (strcmp(Ext,".arr")=0)\n')
file.write(' #local Return=4;\n')
file.write(' #end\n')
file.write(' #else\n')
file.write(' #local Return=1;\n')
file.write(' #end\n')
file.write(' #else\n')
file.write(' #local Return=1;\n')
file.write(' #end\n')
file.write(' #end\n')
file.write(' #else\n')
file.write(' #local Return=1;\n')
file.write(' #end\n')
file.write(' (Return)\n')
file.write('#end\n')
file.write('#macro BuildSpline(Arr, SplType)\n')
file.write(' #local Ds=dimension_size(Arr,1);\n')
file.write(' #local Asc=asc(strupr(SplType));\n')
file.write(' #if(Asc!=67 & Asc!=76 & Asc!=81) \n')
file.write(' #local Asc=76;\n')
file.write(' #debug "\nWrong spline type defined (C/c/L/l/N/n/Q/q), using default linear_spline\\n"\n')
file.write(' #end\n')
file.write(' spline {\n')
file.write(' #switch (Asc)\n')
file.write(' #case (67) //C cubic_spline\n')
file.write(' cubic_spline\n')
file.write(' #break\n')
file.write(' #case (76) //L linear_spline\n')
file.write(' linear_spline\n')
file.write(' #break\n')
file.write(' #case (78) //N linear_spline\n')
file.write(' natural_spline\n')
file.write(' #break\n')
file.write(' #case (81) //Q Quadratic_spline\n')
file.write(' quadratic_spline\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' #local Add=1/((Ds-2)-1);\n')
file.write(' #local J=0-Add;\n')
file.write(' #local I=0;\n')
file.write(' #while (I<Ds)\n')
file.write(' J\n')
file.write(' Arr[I]\n')
file.write(' #local I=I+1;\n')
file.write(' #local J=J+Add;\n')
file.write(' #end\n')
file.write(' }\n')
file.write('#end\n')
file.write('#macro BuildWriteMesh2(VecArr, NormArr, UVArr, U, V, FileName)\n')
#suppressed some file checking from original macro because no more separate files
file.write(' #local Write=0;\n')
file.write(' #debug concat("\\n\\n Building mesh2: \\n - vertex_vectors\\n")\n')
file.write(' #local NumVertices=dimension_size(VecArr,1);\n')
file.write(' #switch (Write)\n')
file.write(' #case(1)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' " vertex_vectors {\\n",\n')
file.write(' " ", str(NumVertices,0,0),"\\n "\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' "# Vertices: ",str(NumVertices,0,0),"\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' str(2*NumVertices,0,0),",\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' "#declare VertexVectors= array[",str(NumVertices,0,0),"] {\\n "\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' mesh2 {\n')
file.write(' vertex_vectors {\n')
file.write(' NumVertices\n')
file.write(' #local I=0;\n')
file.write(' #while (I<NumVertices)\n')
file.write(' VecArr[I]\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile, VecArr[I])\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' "v ", VecArr[I].x," ", VecArr[I].y," ", VecArr[I].z,"\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' VecArr[I].x,",", VecArr[I].y,",", VecArr[I].z,",\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(MeshFile, VecArr[I])\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' #local I=I+1;\n')
file.write(' #if(Write=1 | Write=4)\n')
file.write(' #if(mod(I,3)=0)\n')
file.write(' #write(MeshFile,"\\n ")\n')
file.write(' #end\n')
file.write(' #end \n')
file.write(' #end\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile,"\\n }\\n")\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(MeshFile,"\\n")\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' // do nothing\n')
file.write(' #break\n')
file.write(' #case(4) \n')
file.write(' #write(MeshFile,"\\n}\\n")\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' }\n')
file.write(' #debug concat(" - normal_vectors\\n") \n')
file.write(' #local NumVertices=dimension_size(NormArr,1);\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' " normal_vectors {\\n",\n')
file.write(' " ", str(NumVertices,0,0),"\\n "\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' "# Normals: ",str(NumVertices,0,0),"\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' // do nothing\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' "#declare NormalVectors= array[",str(NumVertices,0,0),"] {\\n "\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' normal_vectors {\n')
file.write(' NumVertices\n')
file.write(' #local I=0;\n')
file.write(' #while (I<NumVertices)\n')
file.write(' NormArr[I]\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile NormArr[I])\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' "vn ", NormArr[I].x," ", NormArr[I].y," ", NormArr[I].z,"\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' NormArr[I].x,",", NormArr[I].y,",", NormArr[I].z,",\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(MeshFile NormArr[I])\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' #local I=I+1;\n')
file.write(' #if(Write=1 | Write=4) \n')
file.write(' #if(mod(I,3)=0)\n')
file.write(' #write(MeshFile,"\\n ")\n')
file.write(' #end\n')
file.write(' #end\n')
file.write(' #end\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile,"\\n }\\n")\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(MeshFile,"\\n")\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' //do nothing\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(MeshFile,"\\n}\\n")\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' }\n')
file.write(' #debug concat(" - uv_vectors\\n") \n')
file.write(' #local NumVertices=dimension_size(UVArr,1);\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(\n')
file.write(' MeshFile, \n')
file.write(' " uv_vectors {\\n",\n')
file.write(' " ", str(NumVertices,0,0),"\\n "\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' "# UV-vectors: ",str(NumVertices,0,0),"\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' // do nothing, *.pcm does not support uv-vectors\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' "#declare UVVectors= array[",str(NumVertices,0,0),"] {\\n "\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' uv_vectors {\n')
file.write(' NumVertices\n')
file.write(' #local I=0;\n')
file.write(' #while (I<NumVertices)\n')
file.write(' UVArr[I]\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile UVArr[I])\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' "vt ", UVArr[I].u," ", UVArr[I].v,"\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' //do nothing\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(MeshFile UVArr[I])\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' #local I=I+1; \n')
file.write(' #if(Write=1 | Write=4)\n')
file.write(' #if(mod(I,3)=0)\n')
file.write(' #write(MeshFile,"\\n ")\n')
file.write(' #end \n')
file.write(' #end\n')
file.write(' #end \n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile,"\\n }\\n")\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(MeshFile,"\\n")\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' //do nothing\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(MeshFile,"\\n}\\n")\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' }\n')
file.write('\n')
file.write(' #debug concat(" - face_indices\\n") \n')
file.write(' #declare NumFaces=U*V*2;\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' " face_indices {\\n"\n')
file.write(' " ", str(NumFaces,0,0),"\\n "\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write (\n')
file.write(' MeshFile,\n')
file.write(' "# faces: ",str(NumFaces,0,0),"\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' #write (\n')
file.write(' MeshFile,\n')
file.write(' "0,",str(NumFaces,0,0),",\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' "#declare FaceIndices= array[",str(NumFaces,0,0),"] {\\n "\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' face_indices {\n')
file.write(' NumFaces\n')
file.write(' #local I=0;\n')
file.write(' #local H=0;\n')
file.write(' #local NumVertices=dimension_size(VecArr,1);\n')
file.write(' #while (I<V)\n')
file.write(' #local J=0;\n')
file.write(' #while (J<U)\n')
file.write(' #local Ind=(I*U)+I+J;\n')
file.write(' <Ind, Ind+1, Ind+U+2>, <Ind, Ind+U+1, Ind+U+2>\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' <Ind, Ind+1, Ind+U+2>, <Ind, Ind+U+1, Ind+U+2>\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' "f ",Ind+1,"/",Ind+1,"/",Ind+1," ",Ind+1+1,"/",Ind+1+1,"/",Ind+1+1," ",Ind+U+2+1,"/",Ind+U+2+1,"/",Ind+U+2+1,"\\n",\n')
file.write(' "f ",Ind+U+1+1,"/",Ind+U+1+1,"/",Ind+U+1+1," ",Ind+1,"/",Ind+1,"/",Ind+1," ",Ind+U+2+1,"/",Ind+U+2+1,"/",Ind+U+2+1,"\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' Ind,",",Ind+NumVertices,",",Ind+1,",",Ind+1+NumVertices,",",Ind+U+2,",",Ind+U+2+NumVertices,",\\n"\n')
file.write(' Ind+U+1,",",Ind+U+1+NumVertices,",",Ind,",",Ind+NumVertices,",",Ind+U+2,",",Ind+U+2+NumVertices,",\\n"\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(\n')
file.write(' MeshFile,\n')
file.write(' <Ind, Ind+1, Ind+U+2>, <Ind, Ind+U+1, Ind+U+2>\n')
file.write(' )\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' #local J=J+1;\n')
file.write(' #local H=H+1;\n')
file.write(' #if(Write=1 | Write=4)\n')
file.write(' #if(mod(H,3)=0)\n')
file.write(' #write(MeshFile,"\\n ")\n')
file.write(' #end \n')
file.write(' #end\n')
file.write(' #end\n')
file.write(' #local I=I+1;\n')
file.write(' #end\n')
file.write(' }\n')
file.write(' #switch(Write)\n')
file.write(' #case(1)\n')
file.write(' #write(MeshFile, "\\n }\\n}")\n')
file.write(' #fclose MeshFile\n')
file.write(' #debug concat(" Done writing\\n")\n')
file.write(' #break\n')
file.write(' #case(2)\n')
file.write(' #fclose MeshFile\n')
file.write(' #debug concat(" Done writing\\n")\n')
file.write(' #break\n')
file.write(' #case(3)\n')
file.write(' #fclose MeshFile\n')
file.write(' #debug concat(" Done writing\\n")\n')
file.write(' #break\n')
file.write(' #case(4)\n')
file.write(' #write(MeshFile, "\\n}\\n}")\n')
file.write(' #fclose MeshFile\n')
file.write(' #debug concat(" Done writing\\n")\n')
file.write(' #break\n')
file.write(' #end\n')
file.write(' }\n')
file.write('#end\n')
file.write('#macro MSM(SplineArray, SplRes, Interp_type, InterpRes, FileName)\n')
file.write(' #declare Build=CheckFileName(FileName);\n')
file.write(' #if(Build=0)\n')
file.write(' #debug concat("\\n Parsing mesh2 from file: ", FileName, "\\n")\n')
file.write(' #include FileName\n')
file.write(' object{Surface}\n')
file.write(' #else\n')
file.write(' #local NumVertices=(SplRes+1)*(InterpRes+1);\n')
file.write(' #local NumFaces=SplRes*InterpRes*2;\n')
file.write(' #debug concat("\\n Calculating ",str(NumVertices,0,0)," vertices for ", str(NumFaces,0,0)," triangles\\n\\n")\n')
file.write(' #local VecArr=array[NumVertices]\n')
file.write(' #local NormArr=array[NumVertices]\n')
file.write(' #local UVArr=array[NumVertices]\n')
file.write(' #local N=dimension_size(SplineArray,1);\n')
file.write(' #local TempSplArr0=array[N];\n')
file.write(' #local TempSplArr1=array[N];\n')
file.write(' #local TempSplArr2=array[N];\n')
file.write(' #local PosStep=1/SplRes;\n')
file.write(' #local InterpStep=1/InterpRes;\n')
file.write(' #local Count=0;\n')
file.write(' #local Pos=0;\n')
file.write(' #while(Pos<=1)\n')
file.write(' #local I=0;\n')
file.write(' #if (Pos=0)\n')
file.write(' #while (I<N)\n')
file.write(' #local Spl=spline{SplineArray[I]}\n')
file.write(' #local TempSplArr0[I]=<0,0,0>+Spl(Pos);\n')
file.write(' #local TempSplArr1[I]=<0,0,0>+Spl(Pos+PosStep);\n')
file.write(' #local TempSplArr2[I]=<0,0,0>+Spl(Pos-PosStep);\n')
file.write(' #local I=I+1;\n')
file.write(' #end\n')
file.write(' #local S0=BuildSpline(TempSplArr0, Interp_type)\n')
file.write(' #local S1=BuildSpline(TempSplArr1, Interp_type)\n')
file.write(' #local S2=BuildSpline(TempSplArr2, Interp_type)\n')
file.write(' #else\n')
file.write(' #while (I<N)\n')
file.write(' #local Spl=spline{SplineArray[I]}\n')
file.write(' #local TempSplArr1[I]=<0,0,0>+Spl(Pos+PosStep);\n')
file.write(' #local I=I+1;\n')
file.write(' #end\n')
file.write(' #local S1=BuildSpline(TempSplArr1, Interp_type)\n')
file.write(' #end\n')
file.write(' #local J=0;\n')
file.write(' #while (J<=1)\n')
file.write(' #local P0=<0,0,0>+S0(J);\n')
file.write(' #local P1=<0,0,0>+S1(J);\n')
file.write(' #local P2=<0,0,0>+S2(J);\n')
file.write(' #local P3=<0,0,0>+S0(J+InterpStep);\n')
file.write(' #local P4=<0,0,0>+S0(J-InterpStep);\n')
file.write(' #local B1=P4-P0;\n')
file.write(' #local B2=P2-P0;\n')
file.write(' #local B3=P3-P0;\n')
file.write(' #local B4=P1-P0;\n')
file.write(' #local N1=vcross(B1,B2);\n')
file.write(' #local N2=vcross(B2,B3);\n')
file.write(' #local N3=vcross(B3,B4);\n')
file.write(' #local N4=vcross(B4,B1);\n')
file.write(' #local Norm=vnormalize((N1+N2+N3+N4));\n')
file.write(' #local VecArr[Count]=P0;\n')
file.write(' #local NormArr[Count]=Norm;\n')
file.write(' #local UVArr[Count]=<J,Pos>;\n')
file.write(' #local J=J+InterpStep;\n')
file.write(' #local Count=Count+1;\n')
file.write(' #end\n')
file.write(' #local S2=spline{S0}\n')
file.write(' #local S0=spline{S1}\n')
file.write(' #debug concat("\\r Done ", str(Count,0,0)," vertices : ", str(100*Count/NumVertices,0,2)," %")\n')
file.write(' #local Pos=Pos+PosStep;\n')
file.write(' #end\n')
file.write(' BuildWriteMesh2(VecArr, NormArr, UVArr, InterpRes, SplRes, "")\n')
file.write(' #end\n')
file.write('#end\n\n')
file.write('#macro Coons(Spl1, Spl2, Spl3, Spl4, Iter_U, Iter_V, FileName)\n')
file.write(' #declare Build=CheckFileName(FileName);\n')
file.write(' #if(Build=0)\n')
file.write(' #debug concat("\\n Parsing mesh2 from file: ", FileName, "\\n")\n')
file.write(' #include FileName\n')
file.write(' object{Surface}\n')
file.write(' #else\n')
file.write(' #local NumVertices=(Iter_U+1)*(Iter_V+1);\n')
file.write(' #local NumFaces=Iter_U*Iter_V*2;\n')
file.write(' #debug concat("\\n Calculating ", str(NumVertices,0,0), " vertices for ",str(NumFaces,0,0), " triangles\\n\\n")\n')
file.write(' #declare VecArr=array[NumVertices] \n')
file.write(' #declare NormArr=array[NumVertices] \n')
file.write(' #local UVArr=array[NumVertices] \n')
file.write(' #local Spl1_0=Spl1(0);\n')
file.write(' #local Spl2_0=Spl2(0);\n')
file.write(' #local Spl3_0=Spl3(0);\n')
file.write(' #local Spl4_0=Spl4(0);\n')
file.write(' #local UStep=1/Iter_U;\n')
file.write(' #local VStep=1/Iter_V;\n')
file.write(' #local Count=0;\n')
file.write(' #local I=0;\n')
file.write(' #while (I<=1)\n')
file.write(' #local Im=1-I;\n')
file.write(' #local J=0;\n')
file.write(' #while (J<=1)\n')
file.write(' #local Jm=1-J;\n')
file.write(' #local C0=Im*Jm*(Spl1_0)+Im*J*(Spl2_0)+I*J*(Spl3_0)+I*Jm*(Spl4_0);\n')
file.write(' #local P0=LInterpolate(I, Spl1(J), Spl3(Jm)) + \n')
file.write(' LInterpolate(Jm, Spl2(I), Spl4(Im))-C0;\n')
file.write(' #declare VecArr[Count]=P0;\n')
file.write(' #local UVArr[Count]=<J,I>;\n')
file.write(' #local J=J+UStep;\n')
file.write(' #local Count=Count+1;\n')
file.write(' #end\n')
file.write(' #debug concat(\n')
file.write(' "\r Done ", str(Count,0,0)," vertices : ",\n')
file.write(' str(100*Count/NumVertices,0,2)," %"\n')
file.write(' )\n')
file.write(' #local I=I+VStep;\n')
file.write(' #end\n')
file.write(' #debug "\r Normals "\n')
file.write(' #local Count=0;\n')
file.write(' #local I=0;\n')
file.write(' #while (I<=Iter_V)\n')
file.write(' #local J=0;\n')
file.write(' #while (J<=Iter_U)\n')
file.write(' #local Ind=(I*Iter_U)+I+J;\n')
file.write(' #local P0=VecArr[Ind];\n')
file.write(' #if(J=0)\n')
file.write(' #local P1=P0+(P0-VecArr[Ind+1]);\n')
file.write(' #else\n')
file.write(' #local P1=VecArr[Ind-1];\n')
file.write(' #end\n')
file.write(' #if (J=Iter_U)\n')
file.write(' #local P2=P0+(P0-VecArr[Ind-1]);\n')
file.write(' #else\n')
file.write(' #local P2=VecArr[Ind+1];\n')
file.write(' #end\n')
file.write(' #if (I=0)\n')
file.write(' #local P3=P0+(P0-VecArr[Ind+Iter_U+1]);\n')
file.write(' #else\n')
file.write(' #local P3=VecArr[Ind-Iter_U-1];\n')
file.write(' #end\n')
file.write(' #if (I=Iter_V)\n')
file.write(' #local P4=P0+(P0-VecArr[Ind-Iter_U-1]);\n')
file.write(' #else\n')
file.write(' #local P4=VecArr[Ind+Iter_U+1];\n')
file.write(' #end\n')
file.write(' #local B1=P4-P0;\n')
file.write(' #local B2=P2-P0;\n')
file.write(' #local B3=P3-P0;\n')
file.write(' #local B4=P1-P0;\n')
file.write(' #local N1=vcross(B1,B2);\n')
file.write(' #local N2=vcross(B2,B3);\n')
file.write(' #local N3=vcross(B3,B4);\n')
file.write(' #local N4=vcross(B4,B1);\n')
file.write(' #local Norm=vnormalize((N1+N2+N3+N4));\n')
file.write(' #declare NormArr[Count]=Norm;\n')
file.write(' #local J=J+1;\n')
file.write(' #local Count=Count+1;\n')
file.write(' #end\n')
file.write(' #debug concat("\r Done ", str(Count,0,0)," normals : ",str(100*Count/NumVertices,0,2), " %")\n')
file.write(' #local I=I+1;\n')
file.write(' #end\n')
file.write(' BuildWriteMesh2(VecArr, NormArr, UVArr, Iter_U, Iter_V, FileName)\n')
file.write(' #end\n')
file.write('#end\n\n')
# Empty curves
if len(ob.data.splines)==0:
tabWrite("\n//dummy sphere to represent empty curve location\n")
tabWrite("#declare %s =\n"%dataname)
tabWrite("sphere {<%.6g, %.6g, %.6g>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n\n" % (ob.location.x, ob.location.y, ob.location.z)) # ob.name > povdataname)
# And non empty curves
else:
if bezier_sweep == False:
tabWrite("#declare %s =\n"%dataname)
if ob.pov.curveshape == 'sphere_sweep' and bezier_sweep == False:
tabWrite("union {\n")
for spl in ob.data.splines:
if spl.type != "BEZIER":
spl_type = "linear"
if spl.type == "NURBS":
spl_type = "cubic"
points=spl.points
numPoints=len(points)
if spl.use_cyclic_u:
numPoints+=3
tabWrite("sphere_sweep { %s_spline %s,\n"%(spl_type,numPoints))
if spl.use_cyclic_u:
pt1 = points[len(points)-1]
wpt1 = pt1.co
tabWrite("<%.4g,%.4g,%.4g>,%.4g\n" %(wpt1[0], wpt1[1], wpt1[2], pt1.radius*ob.data.bevel_depth))
for pt in points:
wpt = pt.co
tabWrite("<%.4g,%.4g,%.4g>,%.4g\n" %(wpt[0], wpt[1], wpt[2], pt.radius*ob.data.bevel_depth))
if spl.use_cyclic_u:
for i in range (0,2):
endPt=points[i]
wpt = endPt.co
tabWrite("<%.4g,%.4g,%.4g>,%.4g\n" %(wpt[0], wpt[1], wpt[2], endPt.radius*ob.data.bevel_depth))
tabWrite("}\n")
# below not used yet?
if ob.pov.curveshape == 'sor':
for spl in ob.data.splines:
if spl.type in {'POLY','NURBS'}:
points=spl.points
numPoints=len(points)
tabWrite("sor { %s,\n"%numPoints)
for pt in points:
wpt = pt.co
tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
else:
tabWrite("box { 0,0\n")
if ob.pov.curveshape in {'lathe','prism'}:
spl = ob.data.splines[0]
if spl.type == "BEZIER":
points=spl.bezier_points
lenCur=len(points)-1
lenPts=lenCur*4
ifprism = ''
if ob.pov.curveshape in {'prism'}:
height = ob.data.extrude
ifprism = '-%s, %s,'%(height, height)
lenCur+=1
lenPts+=4
tabWrite("%s { bezier_spline %s %s,\n"%(ob.pov.curveshape,ifprism,lenPts))
for i in range(0,lenCur):
p1=points[i].co
pR=points[i].handle_right
end = i+1
if i == lenCur-1 and ob.pov.curveshape in {'prism'}:
end = 0
pL=points[end].handle_left
p2=points[end].co
line="<%.4g,%.4g>"%(p1[0],p1[1])
line+="<%.4g,%.4g>"%(pR[0],pR[1])
line+="<%.4g,%.4g>"%(pL[0],pL[1])
line+="<%.4g,%.4g>"%(p2[0],p2[1])
tabWrite("%s\n" %line)
else:
points=spl.points
lenCur=len(points)
lenPts=lenCur
ifprism = ''
if ob.pov.curveshape in {'prism'}:
height = ob.data.extrude
ifprism = '-%s, %s,'%(height, height)
lenPts+=3
spl_type = 'quadratic'
if spl.type == 'POLY':
spl_type = 'linear'
tabWrite("%s { %s_spline %s %s,\n"%(ob.pov.curveshape,spl_type,ifprism,lenPts))
if ob.pov.curveshape in {'prism'}:
pt = points[len(points)-1]
wpt = pt.co
tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
for pt in points:
wpt = pt.co
tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
if ob.pov.curveshape in {'prism'}:
for i in range(2):
pt = points[i]
wpt = pt.co
tabWrite("<%.4g,%.4g>\n" %(wpt[0], wpt[1]))
if bezier_sweep:
for p in range(len(ob.data.splines)):
br = []
depth = ob.data.bevel_depth
spl = ob.data.splines[p]
points=spl.bezier_points
lenCur = len(points)-1
numPoints = lenCur*4
if spl.use_cyclic_u:
lenCur += 1
numPoints += 4
tabWrite("#declare %s_points_%s = array[%s]{\n"%(dataname,p,numPoints))
for i in range(lenCur):
p1=points[i].co
pR=points[i].handle_right
end = i+1
if spl.use_cyclic_u and i == (lenCur - 1):
end = 0
pL=points[end].handle_left
p2=points[end].co
r3 = points[end].radius * depth
r0 = points[i].radius * depth
r1 = 2/3*r0 + 1/3*r3
r2 = 1/3*r0 + 2/3*r3
br.append((r0,r1,r2,r3))
line="<%.4g,%.4g,%.4f>"%(p1[0],p1[1],p1[2])
line+="<%.4g,%.4g,%.4f>"%(pR[0],pR[1],pR[2])
line+="<%.4g,%.4g,%.4f>"%(pL[0],pL[1],pL[2])
line+="<%.4g,%.4g,%.4f>"%(p2[0],p2[1],p2[2])
tabWrite("%s\n" %line)
tabWrite("}\n")
tabWrite("#declare %s_radii_%s = array[%s]{\n"%(dataname,p,len(br)*4))
for Tuple in br:
tabWrite('%.4f,%.4f,%.4f,%.4f\n'%(Tuple[0],Tuple[1],Tuple[2],Tuple[3]))
tabWrite("}\n")
if len(ob.data.splines)== 1:
tabWrite('#declare %s = object{\n'%dataname)
tabWrite(' Shape_Bezierpoints_Sphere_Sweep(yes,%s, %s_points_%s, %s_radii_%s) \n'%(ob.data.resolution_u,dataname,p,dataname,p))
else:
tabWrite('#declare %s = union{\n'%dataname)
for p in range(len(ob.data.splines)):
tabWrite(' object{Shape_Bezierpoints_Sphere_Sweep(yes,%s, %s_points_%s, %s_radii_%s)} \n'%(ob.data.resolution_u,dataname,p,dataname,p))
#tabWrite('#include "bezier_spheresweep.inc"\n') #now inlined
# tabWrite('#declare %s = object{Shape_Bezierpoints_Sphere_Sweep(yes,%s, %s_bezier_points, %.4f) \n'%(dataname,ob.data.resolution_u,dataname,ob.data.bevel_depth))
if ob.pov.curveshape in {'loft'}:
tabWrite('object {MSM(%s,%s,"c",%s,"")\n'%(dataname,ob.pov.res_u,ob.pov.res_v))
if ob.pov.curveshape in {'birail'}:
splines = '%s1,%s2,%s3,%s4'%(dataname,dataname,dataname,dataname)
tabWrite('object {Coons(%s, %s, %s, "")\n'%(splines,ob.pov.res_u,ob.pov.res_v))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
if ob.pov.curveshape in {'prism'}:
tabWrite("rotate <90,0,0>\n")
tabWrite("scale y*-1\n" )
tabWrite("}\n")
#################################################################
def exportMeta(metas):
# TODO - blenders 'motherball' naming is not supported.
if comments and len(metas) >= 1:
file.write("//--Blob objects--\n\n")
# Get groups of metaballs by blender name prefix.
meta_group = {}
meta_elems = {}
for ob in metas:
prefix = ob.name.split(".")[0]
if not prefix in meta_group:
meta_group[prefix] = ob # .data.threshold
elems = [(elem, ob) for elem in ob.data.elements if elem.type in {'BALL', 'ELLIPSOID','CAPSULE','CUBE','PLANE'}]
if prefix in meta_elems:
meta_elems[prefix].extend(elems)
else:
meta_elems[prefix] = elems
# empty metaball
if len(elems)==0:
tabWrite("\n//dummy sphere to represent empty meta location\n")
tabWrite("sphere {<%.6g, %.6g, %.6g>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n\n" % (ob.location.x, ob.location.y, ob.location.z)) # ob.name > povdataname)
# other metaballs
else:
for mg, ob in meta_group.items():
if len(meta_elems[mg])!=0:
tabWrite("blob{threshold %.4g // %s \n" % (ob.data.threshold, mg))
for elems in meta_elems[mg]:
elem = elems[0]
loc = elem.co
stiffness = elem.stiffness
if elem.use_negative:
stiffness = - stiffness
if elem.type == 'BALL':
tabWrite("sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g " %
(loc.x, loc.y, loc.z, elem.radius, stiffness))
writeMatrix(global_matrix * elems[1].matrix_world)
tabWrite("}\n")
elif elem.type == 'ELLIPSOID':
tabWrite("sphere{ <%.6g, %.6g, %.6g>,%.4g,%.4g " %
(loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z,
elem.radius, stiffness))
tabWrite("scale <%.6g, %.6g, %.6g>" % (elem.size_x, elem.size_y, elem.size_z))
writeMatrix(global_matrix * elems[1].matrix_world)
tabWrite("}\n")
elif elem.type == 'CAPSULE':
tabWrite("cylinder{ <%.6g, %.6g, %.6g>,<%.6g, %.6g, %.6g>,%.4g,%.4g " %
((loc.x - elem.size_x), (loc.y), (loc.z),
(loc.x + elem.size_x), (loc.y), (loc.z),
elem.radius, stiffness))
#tabWrite("scale <%.6g, %.6g, %.6g>" % (elem.size_x, elem.size_y, elem.size_z))
writeMatrix(global_matrix * elems[1].matrix_world)
tabWrite("}\n")
elif elem.type == 'CUBE':
tabWrite("cylinder { -x*8, +x*8,%.4g,%.4g translate<%.6g,%.6g,%.6g> scale <1/4,1,1> scale <%.6g, %.6g, %.6g>\n" % (elem.radius*2.0, stiffness/4.0, loc.x, loc.y, loc.z, elem.size_x, elem.size_y, elem.size_z))
writeMatrix(global_matrix * elems[1].matrix_world)
tabWrite("}\n")
tabWrite("cylinder { -y*8, +y*8,%.4g,%.4g translate<%.6g,%.6g,%.6g> scale <1,1/4,1> scale <%.6g, %.6g, %.6g>\n" % (elem.radius*2.0, stiffness/4.0, loc.x, loc.y, loc.z, elem.size_x, elem.size_y, elem.size_z))
writeMatrix(global_matrix * elems[1].matrix_world)
tabWrite("}\n")
tabWrite("cylinder { -z*8, +z*8,%.4g,%.4g translate<%.6g,%.6g,%.6g> scale <1,1,1/4> scale <%.6g, %.6g, %.6g>\n" % (elem.radius*2.0, stiffness/4.0, loc.x, loc.y, loc.z, elem.size_x, elem.size_y, elem.size_z))
writeMatrix(global_matrix * elems[1].matrix_world)
tabWrite("}\n")
elif elem.type == 'PLANE':
tabWrite("cylinder { -x*8, +x*8,%.4g,%.4g translate<%.6g,%.6g,%.6g> scale <1/4,1,1> scale <%.6g, %.6g, %.6g>\n" % (elem.radius*2.0, stiffness/4.0, loc.x, loc.y, loc.z, elem.size_x, elem.size_y, elem.size_z))
writeMatrix(global_matrix * elems[1].matrix_world)
tabWrite("}\n")
tabWrite("cylinder { -y*8, +y*8,%.4g,%.4g translate<%.6g,%.6g,%.6g> scale <1,1/4,1> scale <%.6g, %.6g, %.6g>\n" % (elem.radius*2.0, stiffness/4.0, loc.x, loc.y, loc.z, elem.size_x, elem.size_y, elem.size_z))
writeMatrix(global_matrix * elems[1].matrix_world)
tabWrite("}\n")
try:
material = elems[1].data.materials[0] # lame! - blender cant do enything else.
except:
material = None
if material:
diffuse_color = material.diffuse_color
trans = 1.0 - material.alpha
if material.use_transparency and material.transparency_method == 'RAYTRACE':
povFilter = material.raytrace_transparency.filter * (1.0 - material.alpha)
trans = (1.0 - material.alpha) - povFilter
else:
povFilter = 0.0
material_finish = materialNames[material.name]
tabWrite("pigment {srgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} \n" %
(diffuse_color[0], diffuse_color[1], diffuse_color[2],
povFilter, trans))
tabWrite("finish{%s} " % safety(material_finish, Level=2))
else:
tabWrite("pigment{srgb 1} finish{%s} " % (safety(DEF_MAT_NAME, Level=2)))
writeObjectMaterial(material, ob)
#writeObjectMaterial(material, elems[1])
tabWrite("radiosity{importance %3g}\n" % ob.pov.importance_value)
tabWrite("}\n\n") # End of Metaball block
'''
meta = ob.data
# important because no elements will break parsing.
elements = [elem for elem in meta.elements if elem.type in {'BALL', 'ELLIPSOID'}]
if elements:
tabWrite("blob {\n")
tabWrite("threshold %.4g\n" % meta.threshold)
importance = ob.pov.importance_value
try:
material = meta.materials[0] # lame! - blender cant do enything else.
except:
material = None
for elem in elements:
loc = elem.co
stiffness = elem.stiffness
if elem.use_negative:
stiffness = - stiffness
if elem.type == 'BALL':
tabWrite("sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g }\n" %
(loc.x, loc.y, loc.z, elem.radius, stiffness))
# After this wecould do something simple like...
# "pigment {Blue} }"
# except we'll write the color
elif elem.type == 'ELLIPSOID':
# location is modified by scale
tabWrite("sphere { <%.6g, %.6g, %.6g>, %.4g, %.4g }\n" %
(loc.x / elem.size_x,
loc.y / elem.size_y,
loc.z / elem.size_z,
elem.radius, stiffness))
tabWrite("scale <%.6g, %.6g, %.6g> \n" %
(elem.size_x, elem.size_y, elem.size_z))
if material:
diffuse_color = material.diffuse_color
trans = 1.0 - material.alpha
if material.use_transparency and material.transparency_method == 'RAYTRACE':
povFilter = material.raytrace_transparency.filter * (1.0 - material.alpha)
trans = (1.0 - material.alpha) - povFilter
else:
povFilter = 0.0
material_finish = materialNames[material.name]
tabWrite("pigment {srgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} \n" %
(diffuse_color[0], diffuse_color[1], diffuse_color[2],
povFilter, trans))
tabWrite("finish {%s}\n" % safety(material_finish, Level=2))
else:
tabWrite("pigment {srgb 1} \n")
# Write the finish last.
tabWrite("finish {%s}\n" % (safety(DEF_MAT_NAME, Level=2)))
writeObjectMaterial(material, elems[1])
writeMatrix(global_matrix * ob.matrix_world)
# Importance for radiosity sampling added here
tabWrite("radiosity { \n")
# importance > ob.pov.importance_value
tabWrite("importance %3g \n" % importance)
tabWrite("}\n")
tabWrite("}\n") # End of Metaball block
if comments and len(metas) >= 1:
file.write("\n")
'''
# objectNames = {}
DEF_OBJ_NAME = "Default"
def exportMeshes(scene, sel, csg):
# obmatslist = []
# def hasUniqueMaterial():
# # Grab materials attached to object instances ...
# if hasattr(ob, 'material_slots'):
# for ms in ob.material_slots:
# if ms.material is not None and ms.link == 'OBJECT':
# if ms.material in obmatslist:
# return False
# else:
# obmatslist.append(ms.material)
# return True
# def hasObjectMaterial(ob):
# # Grab materials attached to object instances ...
# if hasattr(ob, 'material_slots'):
# for ms in ob.material_slots:
# if ms.material is not None and ms.link == 'OBJECT':
# # If there is at least one material slot linked to the object
# # and not the data (mesh), always create a new, "private" data instance.
# return True
# return False
# For objects using local material(s) only!
# This is a mapping between a tuple (dataname, materialnames, ...), and the POV dataname.
# As only objects using:
# * The same data.
# * EXACTLY the same materials, in EXACTLY the same sockets.
# ... can share a same instance in POV export.
obmats2data = {}
def checkObjectMaterials(ob, name, dataname):
if hasattr(ob, 'material_slots'):
has_local_mats = False
key = [dataname]
for ms in ob.material_slots:
if ms.material is not None:
key.append(ms.material.name)
if ms.link == 'OBJECT' and not has_local_mats:
has_local_mats = True
else:
# Even if the slot is empty, it is important to grab it...
key.append("")
if has_local_mats:
# If this object uses local material(s), lets find if another object
# using the same data and exactly the same list of materials
# (in the same slots) has already been processed...
# Note that here also, we use object name as new, unique dataname for Pov.
key = tuple(key) # Lists are not hashable...
if key not in obmats2data:
obmats2data[key] = name
return obmats2data[key]
return None
data_ref = {}
def store(scene, ob, name, dataname, matrix):
# The Object needs to be written at least once but if its data is
# already in data_ref this has already been done.
# This func returns the "povray" name of the data, or None
# if no writing is needed.
if ob.is_modified(scene, 'RENDER'):
# Data modified.
# Create unique entry in data_ref by using object name
# (always unique in Blender) as data name.
data_ref[name] = [(name, MatrixAsPovString(matrix))]
return name
# Here, we replace dataname by the value returned by checkObjectMaterials, only if
# it is not evaluated to False (i.e. only if the object uses some local material(s)).
dataname = checkObjectMaterials(ob, name, dataname) or dataname
if dataname in data_ref:
# Data already known, just add the object instance.
data_ref[dataname].append((name, MatrixAsPovString(matrix)))
# No need to write data
return None
else:
# Data not yet processed, create a new entry in data_ref.
data_ref[dataname] = [(name, MatrixAsPovString(matrix))]
return dataname
def exportSmoke(smoke_obj_name):
#if LuxManager.CurrentScene.name == 'preview':
#return 1, 1, 1, 1.0
#else:
flowtype = -1
smoke_obj = bpy.data.objects[smoke_obj_name]
domain = None
# Search smoke domain target for smoke modifiers
for mod in smoke_obj.modifiers:
if mod.name == 'Smoke':
if mod.smoke_type == 'FLOW':
if mod.flow_settings.smoke_flow_type == 'BOTH':
flowtype = 2
else:
if mod.flow_settings.smoke_flow_type == 'SMOKE':
flowtype = 0
else:
if mod.flow_settings.smoke_flow_type == 'FIRE':
flowtype = 1
if mod.smoke_type == 'DOMAIN':
domain = smoke_obj
smoke_modifier = mod
eps = 0.000001
if domain is not None:
#if bpy.app.version[0] >= 2 and bpy.app.version[1] >= 71:
# Blender version 2.71 supports direct access to smoke data structure
set = mod.domain_settings
channeldata = []
for v in set.density_grid:
channeldata.append(v.real)
print(v.real)
## Usage en voxel texture:
# channeldata = []
# if channel == 'density':
# for v in set.density_grid:
# channeldata.append(v.real)
# if channel == 'fire':
# for v in set.flame_grid:
# channeldata.append(v.real)
resolution = set.resolution_max
big_res = []
big_res.append(set.domain_resolution[0])
big_res.append(set.domain_resolution[1])
big_res.append(set.domain_resolution[2])
if set.use_high_resolution:
big_res[0] = big_res[0] * (set.amplify + 1)
big_res[1] = big_res[1] * (set.amplify + 1)
big_res[2] = big_res[2] * (set.amplify + 1)
# else:
# p = []
##gather smoke domain settings
# BBox = domain.bound_box
# p.append([BBox[0][0], BBox[0][1], BBox[0][2]])
# p.append([BBox[6][0], BBox[6][1], BBox[6][2]])
# set = mod.domain_settings
# resolution = set.resolution_max
# smokecache = set.point_cache
# ret = read_cache(smokecache, set.use_high_resolution, set.amplify + 1, flowtype)
# res_x = ret[0]
# res_y = ret[1]
# res_z = ret[2]
# density = ret[3]
# fire = ret[4]
# if res_x * res_y * res_z > 0:
##new cache format
# big_res = []
# big_res.append(res_x)
# big_res.append(res_y)
# big_res.append(res_z)
# else:
# max = domain.dimensions[0]
# if (max - domain.dimensions[1]) < -eps:
# max = domain.dimensions[1]
# if (max - domain.dimensions[2]) < -eps:
# max = domain.dimensions[2]
# big_res = [int(round(resolution * domain.dimensions[0] / max, 0)),
# int(round(resolution * domain.dimensions[1] / max, 0)),
# int(round(resolution * domain.dimensions[2] / max, 0))]
# if set.use_high_resolution:
# big_res = [big_res[0] * (set.amplify + 1), big_res[1] * (set.amplify + 1),
# big_res[2] * (set.amplify + 1)]
# if channel == 'density':
# channeldata = density
# if channel == 'fire':
# channeldata = fire
# sc_fr = '%s/%s/%s/%05d' % (efutil.export_path, efutil.scene_filename(), bpy.context.scene.name, bpy.context.scene.frame_current)
# if not os.path.exists( sc_fr ):
# os.makedirs(sc_fr)
#
# smoke_filename = '%s.smoke' % bpy.path.clean_name(domain.name)
# smoke_path = '/'.join([sc_fr, smoke_filename])
#
# with open(smoke_path, 'wb') as smoke_file:
# # Binary densitygrid file format
# #
# # File header
# smoke_file.write(b'SMOKE') #magic number
# smoke_file.write(struct.pack('<I', big_res[0]))
# smoke_file.write(struct.pack('<I', big_res[1]))
# smoke_file.write(struct.pack('<I', big_res[2]))
# Density data
# smoke_file.write(struct.pack('<%df'%len(channeldata), *channeldata))
#
# LuxLog('Binary SMOKE file written: %s' % (smoke_path))
#return big_res[0], big_res[1], big_res[2], channeldata
mydf3 = df3.df3(big_res[0],big_res[1],big_res[2])
sim_sizeX, sim_sizeY, sim_sizeZ = mydf3.size()
for x in range(sim_sizeX):
for y in range(sim_sizeY):
for z in range(sim_sizeZ):
mydf3.set(x, y, z, channeldata[((z * sim_sizeY + y) * sim_sizeX + x)])
mydf3.exportDF3(smokePath)
print('Binary smoke.df3 file written in preview directory')
if comments:
file.write("\n//--Smoke--\n\n")
# Note: We start with a default unit cube.
# This is mandatory to read correctly df3 data - otherwise we could just directly use bbox
# coordinates from the start, and avoid scale/translate operations at the end...
file.write("box{<0,0,0>, <1,1,1>\n")
file.write(" pigment{ rgbt 1 }\n")
file.write(" hollow\n")
file.write(" interior{ //---------------------\n")
file.write(" media{ method 3\n")
file.write(" emission <1,1,1>*1\n")# 0>1 for dark smoke to white vapour
file.write(" scattering{ 1, // Type\n")
file.write(" <1,1,1>*0.1\n")
file.write(" } // end scattering\n")
file.write(" density{density_file df3 \"%s\"\n" % (smokePath))
file.write(" color_map {\n")
file.write(" [0.00 rgb 0]\n")
file.write(" [0.05 rgb 0]\n")
file.write(" [0.20 rgb 0.2]\n")
file.write(" [0.30 rgb 0.6]\n")
file.write(" [0.40 rgb 1]\n")
file.write(" [1.00 rgb 1]\n")
file.write(" } // end color_map\n")
file.write(" } // end of density\n")
file.write(" samples %i // higher = more precise\n" % resolution)
file.write(" } // end of media --------------------------\n")
file.write(" } // end of interior\n")
# START OF TRANSFORMATIONS
# Size to consider here are bbox dimensions (i.e. still in object space, *before* applying
# loc/rot/scale and other transformations (like parent stuff), aka matrix_world).
bbox = smoke_obj.bound_box
dim = [abs(bbox[6][0] - bbox[0][0]), abs(bbox[6][1] - bbox[0][1]), abs(bbox[6][2] - bbox[0][2])]
# We scale our cube to get its final size and shapes but still in *object* space (same as Blender's bbox).
file.write("scale<%.6g,%.6g,%.6g>\n" % (dim[0], dim[1], dim[2]))
# We offset our cube such that (0,0,0) coordinate matches Blender's object center.
file.write("translate<%.6g,%.6g,%.6g>\n" % (bbox[0][0], bbox[0][1], bbox[0][2]))
# We apply object's transformations to get final loc/rot/size in world space!
# Note: we could combine the two previous transformations with this matrix directly...
writeMatrix(global_matrix * smoke_obj.matrix_world)
# END OF TRANSFORMATIONS
file.write("}\n")
#file.write(" interpolate 1\n")
#file.write(" frequency 0\n")
#file.write(" }\n")
#file.write("}\n")
ob_num = 0
for ob in sel:
ob_num += 1
# XXX I moved all those checks here, as there is no need to compute names
# for object we won't export here!
if (ob.type in {'LIGHT', 'CAMERA', #'EMPTY', #empties can bear dupligroups
'META', 'ARMATURE', 'LATTICE'}):
continue
smokeFlag=False
for mod in ob.modifiers:
if mod and hasattr(mod, 'smoke_type'):
smokeFlag=True
if (mod.smoke_type == 'DOMAIN'):
exportSmoke(ob.name)
break # don't render domain mesh or flow emitter mesh, skip to next object.
if not smokeFlag:
# Export Hair
renderEmitter = True
if hasattr(ob, 'particle_systems'):
renderEmitter = False
for pSys in ob.particle_systems:
if pSys.settings.use_render_emitter:
renderEmitter = True
for mod in [m for m in ob.modifiers if (m is not None) and (m.type == 'PARTICLE_SYSTEM')]:
if (pSys.settings.render_type == 'PATH') and mod.show_render and (pSys.name == mod.particle_system.name):
tstart = time.time()
texturedHair=0
if ob.material_slots[pSys.settings.material - 1].material and ob.active_material is not None:
pmaterial = ob.material_slots[pSys.settings.material - 1].material
for th in pmaterial.texture_slots:
if th and th.use:
if (th.texture.type == 'IMAGE' and th.texture.image) or th.texture.type != 'IMAGE':
if th.use_map_color_diffuse:
texturedHair=1
if pmaterial.strand.use_blender_units:
strandStart = pmaterial.strand.root_size
strandEnd = pmaterial.strand.tip_size
strandShape = pmaterial.strand.shape
else: # Blender unit conversion
strandStart = pmaterial.strand.root_size / 200.0
strandEnd = pmaterial.strand.tip_size / 200.0
strandShape = pmaterial.strand.shape
else:
pmaterial = "default" # No material assigned in blender, use default one
strandStart = 0.01
strandEnd = 0.01
strandShape = 0.0
# Set the number of particles to render count rather than 3d view display
pSys.set_resolution(scene, ob, 'RENDER')
steps = pSys.settings.display_step
steps = 3 ** steps # or (power of 2 rather than 3) + 1 # Formerly : len(particle.hair_keys)
totalNumberOfHairs = ( len(pSys.particles) + len(pSys.child_particles) )
#hairCounter = 0
file.write('#declare HairArray = array[%i] {\n' % totalNumberOfHairs)
for pindex in range(0, totalNumberOfHairs):
#if particle.is_exist and particle.is_visible:
#hairCounter += 1
#controlPointCounter = 0
# Each hair is represented as a separate sphere_sweep in POV-Ray.
file.write('sphere_sweep{')
if pSys.settings.use_hair_bspline:
file.write('b_spline ')
file.write('%i,\n' % (steps + 2)) # +2 because the first point needs tripling to be more than a handle in POV
else:
file.write('linear_spline ')
file.write('%i,\n' % (steps))
#changing world coordinates to object local coordinates by multiplying with inverted matrix
initCo = ob.matrix_world.inverted()*(pSys.co_hair(ob, pindex, 0))
if ob.material_slots[pSys.settings.material - 1].material and ob.active_material is not None:
pmaterial = ob.material_slots[pSys.settings.material-1].material
for th in pmaterial.texture_slots:
if th and th.use and th.use_map_color_diffuse:
#treat POV textures as bitmaps
if (th.texture.type == 'IMAGE' and th.texture.image and th.texture_coords == 'UV' and ob.data.uv_textures is not None): # or (th.texture.pov.tex_pattern_type != 'emulator' and th.texture_coords == 'UV' and ob.data.uv_textures is not None):
image=th.texture.image
image_width = image.size[0]
image_height = image.size[1]
image_pixels = image.pixels[:]
uv_co = pSys.uv_on_emitter(mod, pSys.particles[pindex], pindex, 0)
x_co = round(uv_co[0] * (image_width - 1))
y_co = round(uv_co[1] * (image_height - 1))
pixelnumber = (image_width * y_co) + x_co
r = image_pixels[pixelnumber*4]
g = image_pixels[pixelnumber*4+1]
b = image_pixels[pixelnumber*4+2]
a = image_pixels[pixelnumber*4+3]
initColor=(r,g,b,a)
else:
#only overwrite variable for each competing texture for now
initColor=th.texture.evaluate((initCo[0],initCo[1],initCo[2]))
for step in range(0, steps):
co = ob.matrix_world.inverted()*(pSys.co_hair(ob, pindex, step))
#for controlPoint in particle.hair_keys:
if pSys.settings.clump_factor != 0:
hDiameter = pSys.settings.clump_factor / 200.0 * random.uniform(0.5, 1)
elif step == 0:
hDiameter = strandStart
else:
hDiameter += (strandEnd-strandStart)/(pSys.settings.display_step+1) #XXX +1 or not?
if step == 0 and pSys.settings.use_hair_bspline:
# Write three times the first point to compensate pov Bezier handling
file.write('<%.6g,%.6g,%.6g>,%.7g,\n' % (co[0], co[1], co[2], abs(hDiameter)))
file.write('<%.6g,%.6g,%.6g>,%.7g,\n' % (co[0], co[1], co[2], abs(hDiameter)))
#file.write('<%.6g,%.6g,%.6g>,%.7g' % (particle.location[0], particle.location[1], particle.location[2], abs(hDiameter))) # Useless because particle location is the tip, not the root.
#file.write(',\n')
#controlPointCounter += 1
#totalNumberOfHairs += len(pSys.particles)# len(particle.hair_keys)
# Each control point is written out, along with the radius of the
# hair at that point.
file.write('<%.6g,%.6g,%.6g>,%.7g' % (co[0], co[1], co[2], abs(hDiameter)))
# All coordinates except the last need a following comma.
if step != steps - 1:
file.write(',\n')
else:
if texturedHair:
# Write pigment and alpha (between Pov and Blender alpha 0 and 1 are reversed)
file.write('\npigment{ color srgbf < %.3g, %.3g, %.3g, %.3g> }\n' %(initColor[0], initColor[1], initColor[2], 1.0-initColor[3]))
# End the sphere_sweep declaration for this hair
file.write('}\n')
# All but the final sphere_sweep (each array element) needs a terminating comma.
if pindex != totalNumberOfHairs:
file.write(',\n')
else:
file.write('\n')
# End the array declaration.
file.write('}\n')
file.write('\n')
if not texturedHair:
# Pick up the hair material diffuse color and create a default POV-Ray hair texture.
file.write('#ifndef (HairTexture)\n')
file.write(' #declare HairTexture = texture {\n')
file.write(' pigment {srgbt <%s,%s,%s,%s>}\n' % (pmaterial.diffuse_color[0], pmaterial.diffuse_color[1], pmaterial.diffuse_color[2], (pmaterial.strand.width_fade + 0.05)))
file.write(' }\n')
file.write('#end\n')
file.write('\n')
# Dynamically create a union of the hairstrands (or a subset of them).
# By default use every hairstrand, commented line is for hand tweaking test renders.
file.write('//Increasing HairStep divides the amount of hair for test renders.\n')
file.write('#ifndef(HairStep) #declare HairStep = 1; #end\n')
file.write('union{\n')
file.write(' #local I = 0;\n')
file.write(' #while (I < %i)\n' % totalNumberOfHairs)
file.write(' object {HairArray[I]')
if not texturedHair:
file.write(' texture{HairTexture}\n')
else:
file.write('\n')
# Translucency of the hair:
file.write(' hollow\n')
file.write(' double_illuminate\n')
file.write(' interior {\n')
file.write(' ior 1.45\n')
file.write(' media {\n')
file.write(' scattering { 1, 10*<0.73, 0.35, 0.15> /*extinction 0*/ }\n')
file.write(' absorption 10/<0.83, 0.75, 0.15>\n')
file.write(' samples 1\n')
file.write(' method 2\n')
file.write(' density {cylindrical\n')
file.write(' color_map {\n')
file.write(' [0.0 rgb <0.83, 0.45, 0.35>]\n')
file.write(' [0.5 rgb <0.8, 0.8, 0.4>]\n')
file.write(' [1.0 rgb <1,1,1>]\n')
file.write(' }\n')
file.write(' }\n')
file.write(' }\n')
file.write(' }\n')
file.write(' }\n')
file.write(' #local I = I + HairStep;\n')
file.write(' #end\n')
writeMatrix(global_matrix * ob.matrix_world)
file.write('}')
print('Totals hairstrands written: %i' % totalNumberOfHairs)
print('Number of tufts (particle systems)', len(ob.particle_systems))
# Set back the displayed number of particles to preview count
pSys.set_resolution(scene, ob, 'PREVIEW')
if renderEmitter == False:
continue #don't render mesh, skip to next object.
#############################################
# Generating a name for object just like materials to be able to use it
# (baking for now or anything else).
# XXX I don't understand that if we are here, sel if a non-empty iterable,
# so this condition is always True, IMO -- mont29
if ob.data:
name_orig = "OB" + ob.name
dataname_orig = "DATA" + ob.data.name
elif ob.is_duplicator:
if ob.dupli_type == 'GROUP':
name_orig = "OB" + ob.name
dataname_orig = "DATA" + ob.dupli_group.name
else:
#hoping only dupligroups have several source datablocks
ob.dupli_list_create(scene)
for eachduplicate in ob.dupli_list:
dataname_orig = "DATA" + eachduplicate.object.name
ob.dupli_list_clear()
elif ob.type == 'EMPTY':
name_orig = "OB" + ob.name
dataname_orig = "DATA" + ob.name
else:
name_orig = DEF_OBJ_NAME
dataname_orig = DEF_OBJ_NAME
name = string_strip_hyphen(bpy.path.clean_name(name_orig))
dataname = string_strip_hyphen(bpy.path.clean_name(dataname_orig))
## for slot in ob.material_slots:
## if slot.material is not None and slot.link == 'OBJECT':
## obmaterial = slot.material
#############################################
if info_callback:
info_callback("Object %2.d of %2.d (%s)" % (ob_num, len(sel), ob.name))
#if ob.type != 'MESH':
# continue
# me = ob.data
matrix = global_matrix * ob.matrix_world
povdataname = store(scene, ob, name, dataname, matrix)
if povdataname is None:
print("This is an instance of " + name)
continue
print("Writing Down First Occurrence of " + name)
############################################Povray Primitives
# special exportCurves() function takes care of writing
# lathe, sphere_sweep, birail, and loft except with modifiers
# converted to mesh
if not ob.is_modified(scene, 'RENDER'):
if ob.type == 'CURVE' and (ob.pov.curveshape in
{'lathe', 'sphere_sweep', 'loft'}):
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'ISOSURFACE':
tabWrite("#declare %s = isosurface{ \n"% povdataname)
tabWrite("function{ \n")
textName = ob.pov.iso_function_text
if textName:
node_tree = bpy.context.scene.node_tree
for node in node_tree.nodes:
if node.bl_idname == "IsoPropsNode" and node.label == ob.name:
for inp in node.inputs:
if inp:
tabWrite("#declare %s = %.6g;\n"%(inp.name,inp.default_value))
text = bpy.data.texts[textName]
for line in text.lines:
split = line.body.split()
if split[0] != "#declare":
tabWrite("%s\n"%line.body)
else:
tabWrite("abs(x) - 2 + y")
tabWrite("}\n")
tabWrite("threshold %.6g\n"%ob.pov.threshold)
tabWrite("max_gradient %.6g\n"%ob.pov.max_gradient)
tabWrite("accuracy %.6g\n"%ob.pov.accuracy)
tabWrite("contained_by { ")
if ob.pov.contained_by == "sphere":
tabWrite("sphere {0,%.6g}}\n"%ob.pov.container_scale)
else:
tabWrite("box {-%.6g,%.6g}}\n"%(ob.pov.container_scale,ob.pov.container_scale))
if ob.pov.all_intersections:
tabWrite("all_intersections\n")
else:
if ob.pov.max_trace > 1:
tabWrite("max_trace %.6g\n"%ob.pov.max_trace)
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
tabWrite("scale %.6g\n"%(1/ob.pov.container_scale))
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'SUPERELLIPSOID':
tabWrite("#declare %s = superellipsoid{ <%.4f,%.4f>\n"%(povdataname,ob.pov.se_n2,ob.pov.se_n1))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'SUPERTORUS':
rMajor = ob.pov.st_major_radius
rMinor = ob.pov.st_minor_radius
ring = ob.pov.st_ring
cross = ob.pov.st_cross
accuracy=ob.pov.st_accuracy
gradient=ob.pov.st_max_gradient
############Inline Supertorus macro
file.write("#macro Supertorus(RMj, RMn, MajorControl, MinorControl, Accuracy, MaxGradient)\n")
file.write(" #local CP = 2/MinorControl;\n")
file.write(" #local RP = 2/MajorControl;\n")
file.write(" isosurface {\n")
file.write(" function { pow( pow(abs(pow(pow(abs(x),RP) + pow(abs(z),RP), 1/RP) - RMj),CP) + pow(abs(y),CP) ,1/CP) - RMn }\n")
file.write(" threshold 0\n")
file.write(" contained_by {box {<-RMj-RMn,-RMn,-RMj-RMn>, < RMj+RMn, RMn, RMj+RMn>}}\n")
file.write(" #if(MaxGradient >= 1)\n")
file.write(" max_gradient MaxGradient\n")
file.write(" #else\n")
file.write(" evaluate 1, 10, 0.1\n")
file.write(" #end\n")
file.write(" accuracy Accuracy\n")
file.write(" }\n")
file.write("#end\n")
############
tabWrite("#declare %s = object{ Supertorus( %.4g,%.4g,%.4g,%.4g,%.4g,%.4g)\n"%(povdataname,rMajor,rMinor,ring,cross,accuracy,gradient))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'PLANE':
tabWrite("#declare %s = plane{ <0,0,1>,1\n"%povdataname)
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'BOX':
tabWrite("#declare %s = box { -1,1\n"%povdataname)
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'CONE':
br = ob.pov.cone_base_radius
cr = ob.pov.cone_cap_radius
bz = ob.pov.cone_base_z
cz = ob.pov.cone_cap_z
tabWrite("#declare %s = cone { <0,0,%.4f>,%.4f,<0,0,%.4f>,%.4f\n"%(povdataname,bz,br,cz,cr))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'CYLINDER':
r = ob.pov.cylinder_radius
x2 = ob.pov.cylinder_location_cap[0]
y2 = ob.pov.cylinder_location_cap[1]
z2 = ob.pov.cylinder_location_cap[2]
tabWrite("#declare %s = cylinder { <0,0,0>,<%6f,%6f,%6f>,%6f\n"%(
povdataname,
x2,
y2,
z2,
r))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
#cylinders written at origin, translated below
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'HEIGHT_FIELD':
data = ""
filename = ob.pov.hf_filename
data += '"%s"'%filename
gamma = ' gamma %.4f'%ob.pov.hf_gamma
data += gamma
if ob.pov.hf_premultiplied:
data += ' premultiplied on'
if ob.pov.hf_smooth:
data += ' smooth'
if ob.pov.hf_water > 0:
data += ' water_level %.4f'%ob.pov.hf_water
#hierarchy = ob.pov.hf_hierarchy
tabWrite('#declare %s = height_field { %s\n'%(povdataname,data))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("rotate x*90\n")
tabWrite("translate <-0.5,0.5,0>\n")
tabWrite("scale <0,-1,0>\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'SPHERE':
tabWrite("#declare %s = sphere { 0,%6f\n"%(povdataname,ob.pov.sphere_radius))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
#tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'TORUS':
tabWrite("#declare %s = torus { %.4f,%.4f\n"%(povdataname,ob.pov.torus_major_radius,ob.pov.torus_minor_radius))
povMatName = "Default_texture"
if ob.active_material:
#povMatName = string_strip_hyphen(bpy.path.clean_name(ob.active_material.name))
try:
material = ob.active_material
writeObjectMaterial(material, ob)
except IndexError:
print(me)
#tabWrite("texture {%s}\n"%povMatName)
write_object_modifiers(scene,ob,file)
tabWrite("rotate x*90\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'PARAMETRIC':
tabWrite("#declare %s = parametric {\n"%povdataname)
tabWrite("function { %s }\n"%ob.pov.x_eq)
tabWrite("function { %s }\n"%ob.pov.y_eq)
tabWrite("function { %s }\n"%ob.pov.z_eq)
tabWrite("<%.4f,%.4f>, <%.4f,%.4f>\n"%(ob.pov.u_min,ob.pov.v_min,ob.pov.u_max,ob.pov.v_max))
if ob.pov.contained_by == "sphere":
tabWrite("contained_by { sphere{0, 2} }\n")
else:
tabWrite("contained_by { box{-2, 2} }\n")
tabWrite("max_gradient %.6f\n"%ob.pov.max_gradient)
tabWrite("accuracy %.6f\n"%ob.pov.accuracy)
tabWrite("precompute 10 x,y,z\n")
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
if ob.pov.object_as == 'POLYCIRCLE':
#TODO write below macro Once:
#if write_polytocircle_macro_once == 0:
file.write("/****************************\n")
file.write("This macro was written by 'And'.\n")
file.write("Link:(http://news.povray.org/povray.binaries.scene-files/)\n")
file.write("****************************/\n")
file.write("//from math.inc:\n")
file.write("#macro VPerp_Adjust(V, Axis)\n")
file.write(" vnormalize(vcross(vcross(Axis, V), Axis))\n")
file.write("#end\n")
file.write("//Then for the actual macro\n")
file.write("#macro Shape_Slice_Plane_2P_1V(point1, point2, clip_direct)\n")
file.write("#local p1 = point1 + <0,0,0>;\n")
file.write("#local p2 = point2 + <0,0,0>;\n")
file.write("#local clip_v = vnormalize(clip_direct + <0,0,0>);\n")
file.write("#local direct_v1 = vnormalize(p2 - p1);\n")
file.write("#if(vdot(direct_v1, clip_v) = 1)\n")
file.write(' #error "Shape_Slice_Plane_2P_1V error: Can\'t decide plane"\n')
file.write("#end\n\n")
file.write("#local norm = -vnormalize(clip_v - direct_v1*vdot(direct_v1,clip_v));\n")
file.write("#local d = vdot(norm, p1);\n")
file.write("plane{\n")
file.write("norm, d\n")
file.write("}\n")
file.write("#end\n\n")
file.write("//polygon to circle\n")
file.write("#macro Shape_Polygon_To_Circle_Blending(_polygon_n, _side_face, _polygon_circumscribed_radius, _circle_radius, _height)\n")
file.write("#local n = int(_polygon_n);\n")
file.write("#if(n < 3)\n")
file.write(" #error ""\n")
file.write("#end\n\n")
file.write("#local front_v = VPerp_Adjust(_side_face, z);\n")
file.write("#if(vdot(front_v, x) >= 0)\n")
file.write(" #local face_ang = acos(vdot(-y, front_v));\n")
file.write("#else\n")
file.write(" #local face_ang = -acos(vdot(-y, front_v));\n")
file.write("#end\n")
file.write("#local polyg_ext_ang = 2*pi/n;\n")
file.write("#local polyg_outer_r = _polygon_circumscribed_radius;\n")
file.write("#local polyg_inner_r = polyg_outer_r*cos(polyg_ext_ang/2);\n")
file.write("#local cycle_r = _circle_radius;\n")
file.write("#local h = _height;\n")
file.write("#if(polyg_outer_r < 0 | cycle_r < 0 | h <= 0)\n")
file.write(' #error "error: each side length must be positive"\n')
file.write("#end\n\n")
file.write("#local multi = 1000;\n")
file.write("#local poly_obj =\n")
file.write("polynomial{\n")
file.write("4,\n")
file.write("xyz(0,2,2): multi*1,\n")
file.write("xyz(2,0,1): multi*2*h,\n")
file.write("xyz(1,0,2): multi*2*(polyg_inner_r-cycle_r),\n")
file.write("xyz(2,0,0): multi*(-h*h),\n")
file.write("xyz(0,0,2): multi*(-pow(cycle_r - polyg_inner_r, 2)),\n")
file.write("xyz(1,0,1): multi*2*h*(-2*polyg_inner_r + cycle_r),\n")
file.write("xyz(1,0,0): multi*2*h*h*polyg_inner_r,\n")
file.write("xyz(0,0,1): multi*2*h*polyg_inner_r*(polyg_inner_r - cycle_r),\n")
file.write("xyz(0,0,0): multi*(-pow(polyg_inner_r*h, 2))\n")
file.write("sturm\n")
file.write("}\n\n")
file.write("#local mockup1 =\n")
file.write("difference{\n")
file.write(" cylinder{\n")
file.write(" <0,0,0.0>,<0,0,h>, max(polyg_outer_r, cycle_r)\n")
file.write(" }\n\n")
file.write(" #for(i, 0, n-1)\n")
file.write(" object{\n")
file.write(" poly_obj\n")
file.write(" inverse\n")
file.write(" rotate <0, 0, -90 + degrees(polyg_ext_ang*i)>\n")
file.write(" }\n")
file.write(" object{\n")
file.write(" Shape_Slice_Plane_2P_1V(<polyg_inner_r,0,0>,<cycle_r,0,h>,x)\n")
file.write(" rotate <0, 0, -90 + degrees(polyg_ext_ang*i)>\n")
file.write(" }\n")
file.write(" #end\n")
file.write("}\n\n")
file.write("object{\n")
file.write("mockup1\n")
file.write("rotate <0, 0, degrees(face_ang)>\n")
file.write("}\n")
file.write("#end\n")
#Use the macro
ngon = ob.pov.polytocircle_ngon
ngonR = ob.pov.polytocircle_ngonR
circleR = ob.pov.polytocircle_circleR
tabWrite("#declare %s = object { Shape_Polygon_To_Circle_Blending(%s, z, %.4f, %.4f, 2) rotate x*180 translate z*1\n"%(povdataname,ngon,ngonR,circleR))
tabWrite("}\n")
continue #Don't render proxy mesh, skip to next object
############################################else try to export mesh
elif ob.is_duplicator == False: #except duplis which should be instances groups for now but all duplis later
if ob.type == 'EMPTY':
tabWrite("\n//dummy sphere to represent Empty location\n")
tabWrite("#declare %s =sphere {<0, 0, 0>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n" % povdataname)
try:
me = ob.to_mesh(scene, True, 'RENDER')
#XXX Here? identify the specific exception for mesh object with no data
#XXX So that we can write something for the dataname !
except:
# also happens when curves cant be made into meshes because of no-data
continue
importance = ob.pov.importance_value
if me:
me_materials = me.materials
me_faces = me.loop_triangles[:]
#if len(me_faces)==0:
#tabWrite("\n//dummy sphere to represent empty mesh location\n")
#tabWrite("#declare %s =sphere {<0, 0, 0>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n" % povdataname)
if not me or not me_faces:
tabWrite("\n//dummy sphere to represent empty mesh location\n")
tabWrite("#declare %s =sphere {<0, 0, 0>,0 pigment{rgbt 1} no_image no_reflection no_radiosity photons{pass_through collect off} hollow}\n" % povdataname)
continue
uv_layers = me.uv_layers
if len(uv_layers) > 0:
if me.uv_layers.active and uv_layers.active.data:
uv_layer = uv_layers.active.data
else:
uv_layer = None
try:
#vcol_layer = me.vertex_colors.active.data
vcol_layer = me.vertex_colors.active.data
except AttributeError:
vcol_layer = None
faces_verts = [f.vertices[:] for f in me_faces]
faces_normals = [f.normal[:] for f in me_faces]
verts_normals = [v.normal[:] for v in me.vertices]
# Use named declaration to allow reference e.g. for baking. MR
file.write("\n")
tabWrite("#declare %s =\n" % povdataname)
tabWrite("mesh2 {\n")
tabWrite("vertex_vectors {\n")
tabWrite("%d" % len(me.vertices)) # vert count
tabStr = tab * tabLevel
for v in me.vertices:
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
else:
file.write(", ")
file.write("<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
#tabWrite("<%.6f, %.6f, %.6f>" % v.co[:]) # vert count
file.write("\n")
tabWrite("}\n")
# Build unique Normal list
uniqueNormals = {}
for fi, f in enumerate(me_faces):
fv = faces_verts[fi]
# [-1] is a dummy index, use a list so we can modify in place
if f.use_smooth: # Use vertex normals
for v in fv:
key = verts_normals[v]
uniqueNormals[key] = [-1]
else: # Use face normal
key = faces_normals[fi]
uniqueNormals[key] = [-1]
tabWrite("normal_vectors {\n")
tabWrite("%d" % len(uniqueNormals)) # vert count
idx = 0
tabStr = tab * tabLevel
for no, index in uniqueNormals.items():
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%.6f, %.6f, %.6f>" % no) # vert count
else:
file.write(", ")
file.write("<%.6f, %.6f, %.6f>" % no) # vert count
index[0] = idx
idx += 1
file.write("\n")
tabWrite("}\n")
# Vertex colors
vertCols = {} # Use for material colors also.
if uv_layer:
# Generate unique UV's
uniqueUVs = {}
#n = 0
for f in me.faces:
uvs = [uv_layer[l].uv[:] for l in f.loops]
for uv in uvs:
uniqueUVs[uv[:]] = [-1]
tabWrite("uv_vectors {\n")
#print unique_uvs
tabWrite("%d" % len(uniqueUVs)) # vert count
idx = 0
tabStr = tab * tabLevel
for uv, index in uniqueUVs.items():
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%.6f, %.6f>" % uv)
else:
file.write(", ")
file.write("<%.6f, %.6f>" % uv)
index[0] = idx
idx += 1
'''
else:
# Just add 1 dummy vector, no real UV's
tabWrite('1') # vert count
file.write(',\n\t\t<0.0, 0.0>')
'''
file.write("\n")
tabWrite("}\n")
if me.vertex_colors:
#Write down vertex colors as a texture for each vertex
tabWrite("texture_list {\n")
tabWrite("%d\n" % (len(me_faces) * 3)) # assumes we have only triangles
VcolIdx=0
if comments:
file.write("\n //Vertex colors: one simple pigment texture per vertex\n")
for fi, f in enumerate(me_faces):
# annoying, index may be invalid
material_index = f.material_index
try:
material = me_materials[material_index]
except:
material = None
if material: #and material.use_vertex_color_paint: #Always use vertex color when there is some for now
cols = [vcol_layer[l].color[:] for l in f.loops]
for col in cols:
key = col[0], col[1], col[2], material_index # Material index!
VcolIdx+=1
vertCols[key] = [VcolIdx]
if linebreaksinlists:
tabWrite("texture {pigment{ color srgb <%6f,%6f,%6f> }}\n" % (col[0], col[1], col[2]))
else:
tabWrite("texture {pigment{ color srgb <%6f,%6f,%6f> }}" % (col[0], col[1], col[2]))
tabStr = tab * tabLevel
else:
if material:
# Multiply diffuse with SSS Color
if material.subsurface_scattering.use:
diffuse_color = [i * j for i, j in zip(material.subsurface_scattering.color[:], material.diffuse_color[:])]
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], \
material_index
vertCols[key] = [-1]
else:
diffuse_color = material.diffuse_color[:]
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], \
material_index
vertCols[key] = [-1]
tabWrite("\n}\n")
# Face indices
tabWrite("\nface_indices {\n")
tabWrite("%d" % (len(me_faces))) # faces count
tabStr = tab * tabLevel
for fi, f in enumerate(me_faces):
fv = faces_verts[fi]
material_index = f.material_index
if vcol_layer:
cols = [vcol_layer[l].color[:] for l in f.loops]
if not me_materials or me_materials[material_index] is None: # No materials
if linebreaksinlists:
file.write(",\n")
# vert count
file.write(tabStr + "<%d,%d,%d>" % (fv[0], fv[1], fv[2]))
else:
file.write(", ")
file.write("<%d,%d,%d>" % (fv[0], fv[1], fv[2])) # vert count
else:
material = me_materials[material_index]
if me.vertex_colors: #and material.use_vertex_color_paint:
# Color per vertex - vertex color
col1 = cols[0]
col2 = cols[1]
col3 = cols[2]
ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
else:
# Color per material - flat material color
if material.subsurface_scattering.use:
diffuse_color = [i * j for i, j in zip(material.subsurface_scattering.color[:], material.diffuse_color[:])]
else:
diffuse_color = material.diffuse_color[:]
ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], \
diffuse_color[2], f.material_index][0]
# ci are zero based index so we'll subtract 1 from them
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>, %d,%d,%d" % \
(fv[0], fv[1], fv[2], ci1-1, ci2-1, ci3-1)) # vert count
else:
file.write(", ")
file.write("<%d,%d,%d>, %d,%d,%d" % \
(fv[0], fv[1], fv[2], ci1-1, ci2-1, ci3-1)) # vert count
file.write("\n")
tabWrite("}\n")
# normal_indices indices
tabWrite("normal_indices {\n")
tabWrite("%d" % (len(me_faces))) # faces count
tabStr = tab * tabLevel
for fi, fv in enumerate(faces_verts):
if me_faces[fi].use_smooth:
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" %\
(uniqueNormals[verts_normals[fv[0]]][0],\
uniqueNormals[verts_normals[fv[1]]][0],\
uniqueNormals[verts_normals[fv[2]]][0])) # vert count
else:
file.write(", ")
file.write("<%d,%d,%d>" %\
(uniqueNormals[verts_normals[fv[0]]][0],\
uniqueNormals[verts_normals[fv[1]]][0],\
uniqueNormals[verts_normals[fv[2]]][0])) # vert count
else:
idx = uniqueNormals[faces_normals[fi]][0]
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" % (idx, idx, idx)) # vert count
else:
file.write(", ")
file.write("<%d,%d,%d>" % (idx, idx, idx)) # vert count
file.write("\n")
tabWrite("}\n")
if uv_layer:
tabWrite("uv_indices {\n")
tabWrite("%d" % (len(me_faces))) # faces count
tabStr = tab * tabLevel
for f in me_faces:
uvs = [uv_layer[l].uv[:] for l in f.loops]
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" % (
uniqueUVs[uvs[0]][0],\
uniqueUVs[uvs[1]][0],\
uniqueUVs[uvs[2]][0]))
else:
file.write(", ")
file.write("<%d,%d,%d>" % (
uniqueUVs[uvs[0]][0],\
uniqueUVs[uvs[1]][0],\
uniqueUVs[uvs[2]][0]))
file.write("\n")
tabWrite("}\n")
#XXX BOOLEAN
onceCSG = 0
for mod in ob.modifiers:
if onceCSG == 0:
if mod :
if mod.type == 'BOOLEAN':
if ob.pov.boolean_mod == "POV":
file.write("\tinside_vector <%.6g, %.6g, %.6g>\n" %
(ob.pov.inside_vector[0],
ob.pov.inside_vector[1],
ob.pov.inside_vector[2]))
onceCSG = 1
if me.materials:
try:
material = me.materials[0] # dodgy
writeObjectMaterial(material, ob)
except IndexError:
print(me)
# POV object modifiers such as
# hollow / sturm / double_illuminate etc.
write_object_modifiers(scene,ob,file)
#Importance for radiosity sampling added here:
tabWrite("radiosity { \n")
tabWrite("importance %3g \n" % importance)
tabWrite("}\n")
tabWrite("}\n") # End of mesh block
else:
facesMaterials = [] # WARNING!!!!!!!!!!!!!!!!!!!!!!
if me_materials:
for f in me_faces:
if f.material_index not in facesMaterials:
facesMaterials.append(f.material_index)
# No vertex colors, so write material colors as vertex colors
for i, material in enumerate(me_materials):
if material and material.pov.material_use_nodes == False: # WARNING!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# Multiply diffuse with SSS Color
if material.subsurface_scattering.use:
diffuse_color = [i * j for i, j in zip(material.subsurface_scattering.color[:], material.diffuse_color[:])]
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
vertCols[key] = [-1]
else:
diffuse_color = material.diffuse_color[:]
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
vertCols[key] = [-1]
idx = 0
LocalMaterialNames = []
for col, index in vertCols.items():
#if me_materials:
mater = me_materials[col[3]]
if me_materials is None: #XXX working?
material_finish = DEF_MAT_NAME # not working properly,
trans = 0.0
else:
shading.writeTextureInfluence(mater, materialNames,
LocalMaterialNames,
path_image, lampCount,
imageFormat, imgMap,
imgMapTransforms,
tabWrite, comments,
string_strip_hyphen,
safety, col, os, preview_dir, unpacked_images)
###################################################################
index[0] = idx
idx += 1
# Vert Colors
tabWrite("texture_list {\n")
# In case there's is no material slot, give at least one texture
#(an empty one so it uses pov default)
if len(vertCols)==0:
file.write(tabStr + "1")
else:
file.write(tabStr + "%s" % (len(vertCols))) # vert count
# below "material" alias, added check ob.active_material
# to avoid variable referenced before assignment error
try:
material = ob.active_material
except IndexError:
#when no material slot exists,
material=None
# WARNING!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
if material and ob.active_material is not None and material.pov.material_use_nodes == False:
if material.pov.replacement_text != "":
file.write("\n")
file.write(" texture{%s}\n" % material.pov.replacement_text)
else:
# Loop through declared materials list
for cMN in LocalMaterialNames:
if material != "Default":
file.write("\n texture{MAT_%s}\n" % cMN)
#use string_strip_hyphen(materialNames[material]))
#or Something like that to clean up the above?
elif material and material.pov.material_use_nodes:
for index in facesMaterials:
faceMaterial = string_strip_hyphen(bpy.path.clean_name(me_materials[index].name))
file.write("\n texture{%s}\n" % faceMaterial)
# END!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
else:
file.write(" texture{}\n")
tabWrite("}\n")
# Face indices
tabWrite("face_indices {\n")
tabWrite("%d" % (len(me_faces))) # faces count
tabStr = tab * tabLevel
for fi, f in enumerate(me_faces):
fv = faces_verts[fi]
material_index = f.material_index
if vcol_layer:
cols = [vcol_layer[l].color[:] for l in f.loops]
if not me_materials or me_materials[material_index] is None: # No materials
if linebreaksinlists:
file.write(",\n")
# vert count
file.write(tabStr + "<%d,%d,%d>" % (fv[0], fv[1], fv[2]))
else:
file.write(", ")
file.write("<%d,%d,%d>" % (fv[0], fv[1], fv[2])) # vert count
else:
material = me_materials[material_index]
ci1 = ci2 = ci3 = f.material_index
if me.vertex_colors: #and material.use_vertex_color_paint:
# Color per vertex - vertex color
col1 = cols[0]
col2 = cols[1]
col3 = cols[2]
ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
elif material.pov.material_use_nodes:
ci1 = ci2 = ci3 = 0
else:
# Color per material - flat material color
if material.subsurface_scattering.use:
diffuse_color = [i * j for i, j in
zip(material.subsurface_scattering.color[:],
material.diffuse_color[:])]
else:
diffuse_color = material.diffuse_color[:]
ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], \
diffuse_color[2], f.material_index][0]
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>, %d,%d,%d" % \
(fv[0], fv[1], fv[2], ci1, ci2, ci3)) # vert count
else:
file.write(", ")
file.write("<%d,%d,%d>, %d,%d,%d" % \
(fv[0], fv[1], fv[2], ci1, ci2, ci3)) # vert count
file.write("\n")
tabWrite("}\n")
# normal_indices indices
tabWrite("normal_indices {\n")
tabWrite("%d" % (len(me_faces))) # faces count
tabStr = tab * tabLevel
for fi, fv in enumerate(faces_verts):
if me_faces[fi].use_smooth:
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" %\
(uniqueNormals[verts_normals[fv[0]]][0],\
uniqueNormals[verts_normals[fv[1]]][0],\
uniqueNormals[verts_normals[fv[2]]][0])) # vert count
else:
file.write(", ")
file.write("<%d,%d,%d>" %\
(uniqueNormals[verts_normals[fv[0]]][0],\
uniqueNormals[verts_normals[fv[1]]][0],\
uniqueNormals[verts_normals[fv[2]]][0])) # vert count
else:
idx = uniqueNormals[faces_normals[fi]][0]
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" % (idx, idx, idx)) # vertcount
else:
file.write(", ")
file.write("<%d,%d,%d>" % (idx, idx, idx)) # vert count
file.write("\n")
tabWrite("}\n")
if uv_layer:
tabWrite("uv_indices {\n")
tabWrite("%d" % (len(me_faces))) # faces count
tabStr = tab * tabLevel
for f in me_faces:
uvs = [uv_layer[l].uv[:] for l in f.loops]
if linebreaksinlists:
file.write(",\n")
file.write(tabStr + "<%d,%d,%d>" % (
uniqueUVs[uvs[0]][0],\
uniqueUVs[uvs[1]][0],\
uniqueUVs[uvs[2]][0]))
else:
file.write(", ")
file.write("<%d,%d,%d>" % (
uniqueUVs[uvs[0]][0],\
uniqueUVs[uvs[1]][0],\
uniqueUVs[uvs[2]][0]))
file.write("\n")
tabWrite("}\n")
#XXX BOOLEAN
onceCSG = 0
for mod in ob.modifiers:
if onceCSG == 0:
if mod :
if mod.type == 'BOOLEAN':
if ob.pov.boolean_mod == "POV":
file.write("\tinside_vector <%.6g, %.6g, %.6g>\n" %
(ob.pov.inside_vector[0],
ob.pov.inside_vector[1],
ob.pov.inside_vector[2]))
onceCSG = 1
if me.materials:
try:
material = me.materials[0] # dodgy
writeObjectMaterial(material, ob)
except IndexError:
print(me)
# POV object modifiers such as
# hollow / sturm / double_illuminate etc.
write_object_modifiers(scene,ob,file)
#Importance for radiosity sampling added here:
tabWrite("radiosity { \n")
tabWrite("importance %3g \n" % importance)
tabWrite("}\n")
tabWrite("}\n") # End of mesh block
bpy.data.meshes.remove(me)
if csg:
duplidata_ref = []
for ob in sel:
#matrix = global_matrix * ob.matrix_world
if ob.is_duplicator:
tabWrite("\n//--DupliObjects in %s--\n\n"% ob.name)
ob.dupli_list_create(scene)
dup = ""
if ob.is_modified(scene, 'RENDER'):
#modified object always unique so using object name rather than data name
dup = "#declare OB%s = union{\n" %(string_strip_hyphen(bpy.path.clean_name(ob.name)))
else:
dup = "#declare DATA%s = union{\n" %(string_strip_hyphen(bpy.path.clean_name(ob.name)))
for eachduplicate in ob.dupli_list:
duplidataname = "OB"+string_strip_hyphen(bpy.path.clean_name(bpy.data.objects[eachduplicate.object.name].data.name))
dup += ("\tobject {\n\t\tDATA%s\n\t\t%s\t}\n" %(string_strip_hyphen(bpy.path.clean_name(bpy.data.objects[eachduplicate.object.name].data.name)), MatrixAsPovString(ob.matrix_world.inverted() * eachduplicate.matrix)))
#add object to a list so that it is not rendered for some dupli_types
if ob.dupli_type not in {'GROUP'} and duplidataname not in duplidata_ref:
duplidata_ref.append(duplidataname) #older key [string_strip_hyphen(bpy.path.clean_name("OB"+ob.name))]
dup += "}\n"
ob.dupli_list_clear()
tabWrite(dup)
else:
continue
print(duplidata_ref)
for data_name, inst in data_ref.items():
for ob_name, matrix_str in inst:
if ob_name not in duplidata_ref: #.items() for a dictionary
tabWrite("\n//----Blender Object Name:%s----\n" % ob_name)
if ob.pov.object_as == '':
tabWrite("object { \n")
tabWrite("%s\n" % data_name)
tabWrite("%s\n" % matrix_str)
tabWrite("}\n")
else:
no_boolean = True
for mod in ob.modifiers:
if mod.type == 'BOOLEAN':
operation = None
no_boolean = False
if mod.operation == 'INTERSECT':
operation = 'intersection'
else:
operation = mod.operation.lower()
mod_ob_name = string_strip_hyphen(bpy.path.clean_name(mod.object.name))
mod_matrix = global_matrix * mod.object.matrix_world
mod_ob_matrix = MatrixAsPovString(mod_matrix)
tabWrite("%s { \n"%operation)
tabWrite("object { \n")
tabWrite("%s\n" % data_name)
tabWrite("%s\n" % matrix_str)
tabWrite("}\n")
tabWrite("object { \n")
tabWrite("%s\n" % ('DATA'+ mod_ob_name))
tabWrite("%s\n" % mod_ob_matrix)
tabWrite("}\n")
tabWrite("}\n")
break
if no_boolean:
tabWrite("object { \n")
tabWrite("%s\n" % data_name)
tabWrite("%s\n" % matrix_str)
tabWrite("}\n")
def exportWorld(world):
render = scene.render
camera = scene.camera
matrix = global_matrix * camera.matrix_world
if not world:
return
#############Maurice####################################
#These lines added to get sky gradient (visible with PNG output)
if world:
#For simple flat background:
if not world.use_sky_blend:
# Non fully transparent background could premultiply alpha and avoid anti-aliasing
# display issue:
if render.alpha_mode == 'TRANSPARENT':
tabWrite("background {rgbt<%.3g, %.3g, %.3g, 0.75>}\n" % \
(world.horizon_color[:]))
#Currently using no alpha with Sky option:
elif render.alpha_mode == 'SKY':
tabWrite("background {rgbt<%.3g, %.3g, %.3g, 0>}\n" % (world.horizon_color[:]))
#StraightAlpha:
# XXX Does not exists anymore
#else:
#tabWrite("background {rgbt<%.3g, %.3g, %.3g, 1>}\n" % (world.horizon_color[:]))
worldTexCount = 0
#For Background image textures
for t in world.texture_slots: # risk to write several sky_spheres but maybe ok.
if t and t.texture.type is not None:
worldTexCount += 1
# XXX No enable checkbox for world textures yet (report it?)
#if t and t.texture.type == 'IMAGE' and t.use:
if t and t.texture.type == 'IMAGE':
image_filename = path_image(t.texture.image)
if t.texture.image.filepath != image_filename:
t.texture.image.filepath = image_filename
if image_filename != "" and t.use_map_blend:
texturesBlend = image_filename
#colvalue = t.default_value
t_blend = t
# Commented below was an idea to make the Background image oriented as camera
# taken here:
#http://news.pov.org/pov.newusers/thread/%3Cweb.4a5cddf4e9c9822ba2f93e20@news.pov.org%3E/
# Replace 4/3 by the ratio of each image found by some custom or existing
# function
#mappingBlend = (" translate <%.4g,%.4g,%.4g> rotate z*degrees" \
# "(atan((camLocation - camLookAt).x/(camLocation - " \
# "camLookAt).y)) rotate x*degrees(atan((camLocation - " \
# "camLookAt).y/(camLocation - camLookAt).z)) rotate y*" \
# "degrees(atan((camLocation - camLookAt).z/(camLocation - " \
# "camLookAt).x)) scale <%.4g,%.4g,%.4g>b" % \
# (t_blend.offset.x / 10 , t_blend.offset.y / 10 ,
# t_blend.offset.z / 10, t_blend.scale.x ,
# t_blend.scale.y , t_blend.scale.z))
#using camera rotation valuesdirectly from blender seems much easier
if t_blend.texture_coords == 'ANGMAP':
mappingBlend = ""
else:
# POV-Ray "scale" is not a number of repetitions factor, but its
# inverse, a standard scale factor.
# 0.5 Offset is needed relatively to scale because center of the
# UV scale is 0.5,0.5 in blender and 0,0 in POV
# Further Scale by 2 and translate by -1 are
# required for the sky_sphere not to repeat
mappingBlend = "scale 2 scale <%.4g,%.4g,%.4g> translate -1 " \
"translate <%.4g,%.4g,%.4g> rotate<0,0,0> " % \
((1.0 / t_blend.scale.x),
(1.0 / t_blend.scale.y),
(1.0 / t_blend.scale.z),
0.5-(0.5/t_blend.scale.x)- t_blend.offset.x,
0.5-(0.5/t_blend.scale.y)- t_blend.offset.y,
t_blend.offset.z)
# The initial position and rotation of the pov camera is probably creating
# the rotation offset should look into it someday but at least background
# won't rotate with the camera now.
# Putting the map on a plane would not introduce the skysphere distortion and
# allow for better image scale matching but also some waay to chose depth and
# size of the plane relative to camera.
tabWrite("sky_sphere {\n")
tabWrite("pigment {\n")
tabWrite("image_map{%s \"%s\" %s}\n" % \
(imageFormat(texturesBlend), texturesBlend, imgMapBG(t_blend)))
tabWrite("}\n")
tabWrite("%s\n" % (mappingBlend))
# The following layered pigment opacifies to black over the texture for
# transmit below 1 or otherwise adds to itself
tabWrite("pigment {rgb 0 transmit %s}\n" % (t.texture.intensity))
tabWrite("}\n")
#tabWrite("scale 2\n")
#tabWrite("translate -1\n")
#For only Background gradient
if worldTexCount == 0:
if world.use_sky_blend:
tabWrite("sky_sphere {\n")
tabWrite("pigment {\n")
# maybe Should follow the advice of POV doc about replacing gradient
# for skysphere..5.5
tabWrite("gradient y\n")
tabWrite("color_map {\n")
# XXX Does not exists anymore
#if render.alpha_mode == 'STRAIGHT':
#tabWrite("[0.0 rgbt<%.3g, %.3g, %.3g, 1>]\n" % (world.horizon_color[:]))
#tabWrite("[1.0 rgbt<%.3g, %.3g, %.3g, 1>]\n" % (world.zenith_color[:]))
if render.alpha_mode == 'TRANSPARENT':
tabWrite("[0.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n" % (world.horizon_color[:]))
# aa premult not solved with transmit 1
tabWrite("[1.0 rgbt<%.3g, %.3g, %.3g, 0.99>]\n" % (world.zenith_color[:]))
else:
tabWrite("[0.0 rgbt<%.3g, %.3g, %.3g, 0>]\n" % (world.horizon_color[:]))
tabWrite("[1.0 rgbt<%.3g, %.3g, %.3g, 0>]\n" % (world.zenith_color[:]))
tabWrite("}\n")
tabWrite("}\n")
tabWrite("}\n")
# Sky_sphere alpha (transmit) is not translating into image alpha the same
# way as 'background'
#if world.light_settings.use_indirect_light:
# scene.pov.radio_enable=1
# Maybe change the above to a function copyInternalRenderer settings when
# user pushes a button, then:
#scene.pov.radio_enable = world.light_settings.use_indirect_light
# and other such translations but maybe this would not be allowed either?
###############################################################
mist = world.mist_settings
if mist.use_mist:
tabWrite("fog {\n")
if mist.falloff=='LINEAR':
tabWrite("distance %.6f\n" % ((mist.start+mist.depth)*0.368))
elif mist.falloff=='QUADRATIC': # n**2 or squrt(n)?
tabWrite("distance %.6f\n" % ((mist.start+mist.depth)**2*0.368))
elif mist.falloff=='INVERSE_QUADRATIC': # n**2 or squrt(n)?
tabWrite("distance %.6f\n" % ((mist.start+mist.depth)**2*0.368))
tabWrite("color rgbt<%.3g, %.3g, %.3g, %.3g>\n" % \
(*world.horizon_color, 1.0 - mist.intensity))
#tabWrite("fog_offset %.6f\n" % mist.start) #create a pov property to prepend
#tabWrite("fog_alt %.6f\n" % mist.height) #XXX right?
#tabWrite("turbulence 0.2\n")
#tabWrite("turb_depth 0.3\n")
tabWrite("fog_type 1\n") #type2 for height
tabWrite("}\n")
if scene.pov.media_enable:
tabWrite("media {\n")
tabWrite("scattering { %d, rgb %.12f*<%.4g, %.4g, %.4g>\n" % \
(int(scene.pov.media_scattering_type),
(scene.pov.media_diffusion_scale),
*(scene.pov.media_diffusion_color[:])))
if scene.pov.media_scattering_type == '5':
tabWrite("eccentricity %.3g\n" % scene.pov.media_eccentricity)
tabWrite("}\n")
tabWrite("absorption %.12f*<%.4g, %.4g, %.4g>\n" % \
(scene.pov.media_absorption_scale,
*(scene.pov.media_absorption_color[:])))
tabWrite("\n")
tabWrite("samples %.d\n" % scene.pov.media_samples)
tabWrite("}\n")
def exportGlobalSettings(scene):
tabWrite("global_settings {\n")
tabWrite("assumed_gamma 1.0\n")
tabWrite("max_trace_level %d\n" % scene.pov.max_trace_level)
if scene.pov.charset != 'ascii':
file.write(" charset %s\n"%scene.pov.charset)
if scene.pov.global_settings_advanced:
if scene.pov.radio_enable == False:
file.write(" adc_bailout %.6f\n"%scene.pov.adc_bailout)
file.write(" ambient_light <%.6f,%.6f,%.6f>\n"%scene.pov.ambient_light[:])
file.write(" irid_wavelength <%.6f,%.6f,%.6f>\n"%scene.pov.irid_wavelength[:])
file.write(" max_intersections %s\n"%scene.pov.max_intersections)
file.write(" number_of_waves %s\n"%scene.pov.number_of_waves)
file.write(" noise_generator %s\n"%scene.pov.noise_generator)
if scene.pov.radio_enable:
tabWrite("radiosity {\n")
tabWrite("adc_bailout %.4g\n" % scene.pov.radio_adc_bailout)
tabWrite("brightness %.4g\n" % scene.pov.radio_brightness)
tabWrite("count %d\n" % scene.pov.radio_count)
tabWrite("error_bound %.4g\n" % scene.pov.radio_error_bound)
tabWrite("gray_threshold %.4g\n" % scene.pov.radio_gray_threshold)
tabWrite("low_error_factor %.4g\n" % scene.pov.radio_low_error_factor)
tabWrite("maximum_reuse %.4g\n" % scene.pov.radio_maximum_reuse)
tabWrite("minimum_reuse %.4g\n" % scene.pov.radio_minimum_reuse)
tabWrite("nearest_count %d\n" % scene.pov.radio_nearest_count)
tabWrite("pretrace_start %.3g\n" % scene.pov.radio_pretrace_start)
tabWrite("pretrace_end %.3g\n" % scene.pov.radio_pretrace_end)
tabWrite("recursion_limit %d\n" % scene.pov.radio_recursion_limit)
tabWrite("always_sample %d\n" % scene.pov.radio_always_sample)
tabWrite("normal %d\n" % scene.pov.radio_normal)
tabWrite("media %d\n" % scene.pov.radio_media)
tabWrite("subsurface %d\n" % scene.pov.radio_subsurface)
tabWrite("}\n")
onceSss = 1
onceAmbient = 1
oncePhotons = 1
for material in bpy.data.materials:
if material.subsurface_scattering.use and onceSss:
# In pov, the scale has reversed influence compared to blender. these number
# should correct that
tabWrite("mm_per_unit %.6f\n" % \
(material.subsurface_scattering.scale * 1000.0))
# 1000 rather than scale * (-100.0) + 15.0))
# In POV-Ray, the scale factor for all subsurface shaders needs to be the same
# formerly sslt_samples were multiplied by 100 instead of 10
sslt_samples = (11 - material.subsurface_scattering.error_threshold) * 10
tabWrite("subsurface { samples %d, %d }\n" % (sslt_samples, sslt_samples / 10))
onceSss = 0
if world and onceAmbient:
tabWrite("ambient_light rgb<%.3g, %.3g, %.3g>\n" % world.ambient_color[:])
onceAmbient = 0
if scene.pov.photon_enable:
if (oncePhotons and
(material.pov.refraction_type == "2" or
material.pov.photons_reflection == True)):
tabWrite("photons {\n")
tabWrite("spacing %.6f\n" % scene.pov.photon_spacing)
tabWrite("max_trace_level %d\n" % scene.pov.photon_max_trace_level)
tabWrite("adc_bailout %.3g\n" % scene.pov.photon_adc_bailout)
tabWrite("gather %d, %d\n" % (scene.pov.photon_gather_min,
scene.pov.photon_gather_max))
if scene.pov.photon_map_file_save_load in {'save'}:
filePhName = 'Photon_map_file.ph'
if scene.pov.photon_map_file != '':
filePhName = scene.pov.photon_map_file+'.ph'
filePhDir = tempfile.gettempdir()
path = bpy.path.abspath(scene.pov.photon_map_dir)
if os.path.exists(path):
filePhDir = path
fullFileName = os.path.join(filePhDir,filePhName)
tabWrite('save_file "%s"\n'%fullFileName)
scene.pov.photon_map_file = fullFileName
if scene.pov.photon_map_file_save_load in {'load'}:
fullFileName = bpy.path.abspath(scene.pov.photon_map_file)
if os.path.exists(fullFileName):
tabWrite('load_file "%s"\n'%fullFileName)
tabWrite("}\n")
oncePhotons = 0
tabWrite("}\n")
def exportCustomCode():
# Write CurrentAnimation Frame for use in Custom POV Code
file.write("#declare CURFRAMENUM = %d;\n" % bpy.context.scene.frame_current)
#Change path and uncomment to add an animated include file by hand:
file.write("//#include \"/home/user/directory/animation_include_file.inc\"\n")
for txt in bpy.data.texts:
if txt.pov.custom_code == 'both':
# Why are the newlines needed?
file.write("\n")
file.write(txt.as_string())
file.write("\n")
#sel = renderable_objects(scene) #removed for booleans
if comments:
file.write("//----------------------------------------------\n" \
"//--Exported with POV-Ray exporter for Blender--\n" \
"//----------------------------------------------\n\n")
file.write("#version 3.7;\n")
if comments:
file.write("\n//--Global settings--\n\n")
exportGlobalSettings(scene)
if comments:
file.write("\n//--Custom Code--\n\n")
exportCustomCode()
if comments:
file.write("\n//--Patterns Definitions--\n\n")
LocalPatternNames = []
for texture in bpy.data.textures: #ok?
if texture.users > 0:
currentPatName = string_strip_hyphen(bpy.path.clean_name(texture.name))
#string_strip_hyphen(patternNames[texture.name]) #maybe instead of the above
LocalPatternNames.append(currentPatName)
#use above list to prevent writing texture instances several times and assign in mats?
if (texture.type not in {'NONE', 'IMAGE'} and texture.pov.tex_pattern_type == 'emulator')or(texture.type in {'NONE', 'IMAGE'} and texture.pov.tex_pattern_type != 'emulator'):
file.write("\n#declare PAT_%s = \n" % currentPatName)
file.write(shading.exportPattern(texture, string_strip_hyphen))
file.write("\n")
if comments:
file.write("\n//--Background--\n\n")
exportWorld(scene.world)
if comments:
file.write("\n//--Cameras--\n\n")
exportCamera()
if comments:
file.write("\n//--Lamps--\n\n")
for ob in bpy.data.objects:
if ob.type == 'MESH':
for mod in ob.modifiers:
if mod.type == 'BOOLEAN':
if mod.object not in csg_list:
csg_list.append(mod.object)
if csg_list != []:
csg = False
sel = no_renderable_objects(scene)
exportMeshes(scene, sel, csg)
csg = True
sel = renderable_objects(scene)
exportLamps([L for L in sel if (L.type == 'LIGHT' and L.pov.object_as != 'RAINBOW')])
if comments:
file.write("\n//--Rainbows--\n\n")
exportRainbows([L for L in sel if (L.type == 'LIGHT' and L.pov.object_as == 'RAINBOW')])
if comments:
file.write("\n//--Special Curves--\n\n")
for c in sel:
if c.is_modified(scene, 'RENDER'):
continue #don't export as pov curves objects with modifiers, but as mesh
elif c.type == 'CURVE' and (c.pov.curveshape in {'lathe','sphere_sweep','loft','birail'}):
exportCurves(scene,c)
if comments:
file.write("\n//--Material Definitions--\n\n")
# write a default pigment for objects with no material (comment out to show black)
file.write("#default{ pigment{ color srgb 0.8 }}\n")
# Convert all materials to strings we can access directly per vertex.
#exportMaterials()
shading.writeMaterial(using_uberpov, DEF_MAT_NAME, scene, tabWrite, safety, comments, uniqueName, materialNames, None) # default material
for material in bpy.data.materials:
if material.users > 0:
if material.pov.material_use_nodes:
ntree = material.node_tree
povMatName=string_strip_hyphen(bpy.path.clean_name(material.name))
if len(ntree.nodes)==0:
file.write('#declare %s = texture {%s}\n'%(povMatName,color))
else:
shading.write_nodes(scene,povMatName,ntree,file)
for node in ntree.nodes:
if node:
if node.bl_idname == "PovrayOutputNode":
if node.inputs["Texture"].is_linked:
for link in ntree.links:
if link.to_node.bl_idname == "PovrayOutputNode":
povMatName=string_strip_hyphen(bpy.path.clean_name(link.from_node.name))+"_%s"%povMatName
else:
file.write('#declare %s = texture {%s}\n'%(povMatName,color))
else:
shading.writeMaterial(using_uberpov, DEF_MAT_NAME, scene, tabWrite, safety, comments, uniqueName, materialNames, material)
# attributes are all the variables needed by the other python file...
if comments:
file.write("\n")
exportMeta([m for m in sel if m.type == 'META'])
if comments:
file.write("//--Mesh objects--\n")
exportMeshes(scene, sel, csg)
#What follow used to happen here:
#exportCamera()
#exportWorld(scene.world)
#exportGlobalSettings(scene)
# MR:..and the order was important for implementing pov 3.7 baking
# (mesh camera) comment for the record
# CR: Baking should be a special case than. If "baking", than we could change the order.
#print("pov file closed %s" % file.closed)
file.close()
#print("pov file closed %s" % file.closed)
def write_pov_ini(scene, filename_ini, filename_log, filename_pov, filename_image):
feature_set = bpy.context.user_preferences.addons[__package__].preferences.branch_feature_set_povray
using_uberpov = (feature_set=='uberpov')
#scene = bpy.data.scenes[0]
render = scene.render
x = int(render.resolution_x * render.resolution_percentage * 0.01)
y = int(render.resolution_y * render.resolution_percentage * 0.01)
file = open(filename_ini, "w")
file.write("Version=3.7\n")
#write povray text stream to temporary file of same name with _log suffix
#file.write("All_File='%s'\n" % filename_log)
# DEBUG.OUT log if none specified:
file.write("All_File=1\n")
file.write("Input_File_Name='%s'\n" % filename_pov)
file.write("Output_File_Name='%s'\n" % filename_image)
file.write("Width=%d\n" % x)
file.write("Height=%d\n" % y)
# Border render.
if render.use_border:
file.write("Start_Column=%4g\n" % render.border_min_x)
file.write("End_Column=%4g\n" % (render.border_max_x))
file.write("Start_Row=%4g\n" % (1.0 - render.border_max_y))
file.write("End_Row=%4g\n" % (1.0 - render.border_min_y))
file.write("Bounding_Method=2\n") # The new automatic BSP is faster in most scenes
# Activated (turn this back off when better live exchange is done between the two programs
# (see next comment)
file.write("Display=1\n")
file.write("Pause_When_Done=0\n")
# PNG, with POV-Ray 3.7, can show background color with alpha. In the long run using the
# POV-Ray interactive preview like bishop 3D could solve the preview for all formats.
file.write("Output_File_Type=N\n")
#file.write("Output_File_Type=T\n") # TGA, best progressive loading
file.write("Output_Alpha=1\n")
if scene.pov.antialias_enable:
# method 2 (recursive) with higher max subdiv forced because no mipmapping in POV-Ray
# needs higher sampling.
# aa_mapping = {"5": 2, "8": 3, "11": 4, "16": 5}
if using_uberpov:
method = {"0": 1, "1": 2, "2": 3}
else:
method = {"0": 1, "1": 2, "2": 2}
file.write("Antialias=on\n")
file.write("Antialias_Depth=%d\n" % scene.pov.antialias_depth)
file.write("Antialias_Threshold=%.3g\n" % scene.pov.antialias_threshold)
if using_uberpov and scene.pov.antialias_method == '2':
file.write("Sampling_Method=%s\n" % method[scene.pov.antialias_method])
file.write("Antialias_Confidence=%.3g\n" % scene.pov.antialias_confidence)
else:
file.write("Sampling_Method=%s\n" % method[scene.pov.antialias_method])
file.write("Antialias_Gamma=%.3g\n" % scene.pov.antialias_gamma)
if scene.pov.jitter_enable:
file.write("Jitter=on\n")
file.write("Jitter_Amount=%3g\n" % scene.pov.jitter_amount)
else:
file.write("Jitter=off\n") # prevent animation flicker
else:
file.write("Antialias=off\n")
#print("ini file closed %s" % file.closed)
file.close()
#print("ini file closed %s" % file.closed)
class PovrayRender(bpy.types.RenderEngine):
bl_idname = 'POVRAY_RENDER'
bl_label = "Persitence Of Vision"
DELAY = 0.5
@staticmethod
def _locate_binary():
addon_prefs = bpy.context.user_preferences.addons[__package__].preferences
# Use the system preference if its set.
pov_binary = addon_prefs.filepath_povray
if pov_binary:
if os.path.exists(pov_binary):
return pov_binary
else:
print("User Preferences path to povray %r NOT FOUND, checking $PATH" % pov_binary)
# Windows Only
# assume if there is a 64bit binary that the user has a 64bit capable OS
if sys.platform[:3] == "win":
import winreg
win_reg_key = winreg.OpenKey(winreg.HKEY_CURRENT_USER,
"Software\\POV-Ray\\v3.7\\Windows")
win_home = winreg.QueryValueEx(win_reg_key, "Home")[0]
# First try 64bits UberPOV
pov_binary = os.path.join(win_home, "bin", "uberpov64.exe")
if os.path.exists(pov_binary):
return pov_binary
# Then try 64bits POV
pov_binary = os.path.join(win_home, "bin", "pvengine64.exe")
if os.path.exists(pov_binary):
return pov_binary
# Then try 32bits UberPOV
pov_binary = os.path.join(win_home, "bin", "uberpov32.exe")
if os.path.exists(pov_binary):
return pov_binary
# Then try 32bits POV
pov_binary = os.path.join(win_home, "bin", "pvengine.exe")
if os.path.exists(pov_binary):
return pov_binary
# search the path all os's
pov_binary_default = "povray"
os_path_ls = os.getenv("PATH").split(':') + [""]
for dir_name in os_path_ls:
pov_binary = os.path.join(dir_name, pov_binary_default)
if os.path.exists(pov_binary):
return pov_binary
return ""
def _export(self, scene, povPath, renderImagePath):
import tempfile
if scene.pov.tempfiles_enable:
self._temp_file_in = tempfile.NamedTemporaryFile(suffix=".pov", delete=False).name
# PNG with POV 3.7, can show the background color with alpha. In the long run using the
# POV-Ray interactive preview like bishop 3D could solve the preview for all formats.
self._temp_file_out = tempfile.NamedTemporaryFile(suffix=".png", delete=False).name
#self._temp_file_out = tempfile.NamedTemporaryFile(suffix=".tga", delete=False).name
self._temp_file_ini = tempfile.NamedTemporaryFile(suffix=".ini", delete=False).name
self._temp_file_log = os.path.join(tempfile.gettempdir(), "alltext.out")
else:
self._temp_file_in = povPath + ".pov"
# PNG with POV 3.7, can show the background color with alpha. In the long run using the
# POV-Ray interactive preview like bishop 3D could solve the preview for all formats.
self._temp_file_out = renderImagePath + ".png"
#self._temp_file_out = renderImagePath + ".tga"
self._temp_file_ini = povPath + ".ini"
logPath = bpy.path.abspath(scene.pov.scene_path).replace('\\', '/')
self._temp_file_log = os.path.join(logPath, "alltext.out")
'''
self._temp_file_in = "/test.pov"
# PNG with POV 3.7, can show the background color with alpha. In the long run using the
# POV-Ray interactive preview like bishop 3D could solve the preview for all formats.
self._temp_file_out = "/test.png"
#self._temp_file_out = "/test.tga"
self._temp_file_ini = "/test.ini"
'''
if scene.pov.text_block == "":
def info_callback(txt):
self.update_stats("", "POV-Ray 3.7: " + txt)
# os.makedirs(user_dir, exist_ok=True) # handled with previews
os.makedirs(preview_dir, exist_ok=True)
write_pov(self._temp_file_in, scene, info_callback)
else:
pass
def _render(self, scene):
try:
os.remove(self._temp_file_out) # so as not to load the old file
except OSError:
pass
pov_binary = PovrayRender._locate_binary()
if not pov_binary:
print("POV-Ray 3.7: could not execute povray, possibly POV-Ray isn't installed")
return False
write_pov_ini(scene, self._temp_file_ini, self._temp_file_log, self._temp_file_in, self._temp_file_out)
print ("***-STARTING-***")
extra_args = []
if scene.pov.command_line_switches != "":
for newArg in scene.pov.command_line_switches.split(" "):
extra_args.append(newArg)
self._is_windows = False
if sys.platform[:3] == "win":
self._is_windows = True
if"/EXIT" not in extra_args and not scene.pov.pov_editor:
extra_args.append("/EXIT")
else:
# added -d option to prevent render window popup which leads to segfault on linux
extra_args.append("-d")
# Start Rendering!
try:
self._process = subprocess.Popen([pov_binary, self._temp_file_ini] + extra_args,
stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
except OSError:
# TODO, report api
print("POV-Ray 3.7: could not execute '%s'" % pov_binary)
import traceback
traceback.print_exc()
print ("***-DONE-***")
return False
else:
print("Engine ready!...")
print("Command line arguments passed: " + str(extra_args))
return True
# Now that we have a valid process
def _cleanup(self):
for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out):
for i in range(5):
try:
os.unlink(f)
break
except OSError:
# Wait a bit before retrying file might be still in use by Blender,
# and Windows does not know how to delete a file in use!
time.sleep(self.DELAY)
for i in unpacked_images:
for c in range(5):
try:
os.unlink(i)
break
except OSError:
# Wait a bit before retrying file might be still in use by Blender,
# and Windows does not know how to delete a file in use!
time.sleep(self.DELAY)
def render(self, scene):
import tempfile
r = scene.render
x = int(r.resolution_x * r.resolution_percentage * 0.01)
y = int(r.resolution_y * r.resolution_percentage * 0.01)
print("***INITIALIZING***")
# This makes some tests on the render, returning True if all goes good, and False if
# it was finished one way or the other.
# It also pauses the script (time.sleep())
def _test_wait():
time.sleep(self.DELAY)
# User interrupts the rendering
if self.test_break():
try:
self._process.terminate()
print("***POV INTERRUPTED***")
except OSError:
pass
return False
poll_result = self._process.poll()
# POV process is finisehd, one way or the other
if poll_result is not None:
if poll_result < 0:
print("***POV PROCESS FAILED : %s ***" % poll_result)
self.update_stats("", "POV-Ray 3.7: Failed")
return False
return True
if scene.pov.text_block !="":
if scene.pov.tempfiles_enable:
self._temp_file_in = tempfile.NamedTemporaryFile(suffix=".pov", delete=False).name
self._temp_file_out = tempfile.NamedTemporaryFile(suffix=".png", delete=False).name
#self._temp_file_out = tempfile.NamedTemporaryFile(suffix=".tga", delete=False).name
self._temp_file_ini = tempfile.NamedTemporaryFile(suffix=".ini", delete=False).name
self._temp_file_log = os.path.join(tempfile.gettempdir(), "alltext.out")
else:
povPath = scene.pov.text_block
renderImagePath = os.path.splitext(povPath)[0]
self._temp_file_out =os.path.join(preview_dir, renderImagePath )
self._temp_file_in = os.path.join(preview_dir, povPath)
self._temp_file_ini = os.path.join(preview_dir, (os.path.splitext(self._temp_file_in)[0]+".INI"))
self._temp_file_log = os.path.join(preview_dir, "alltext.out")
'''
try:
os.remove(self._temp_file_in) # so as not to load the old file
except OSError:
pass
'''
print(scene.pov.text_block)
text = bpy.data.texts[scene.pov.text_block]
file=open("%s"%self._temp_file_in,"w")
# Why are the newlines needed?
file.write("\n")
file.write(text.as_string())
file.write("\n")
file.close()
# has to be called to update the frame on exporting animations
scene.frame_set(scene.frame_current)
pov_binary = PovrayRender._locate_binary()
if not pov_binary:
print("POV-Ray 3.7: could not execute povray, possibly POV-Ray isn't installed")
return False
# start ini UI options export
self.update_stats("", "POV-Ray 3.7: Exporting ini options from Blender")
write_pov_ini(scene, self._temp_file_ini, self._temp_file_log, self._temp_file_in, self._temp_file_out)
print ("***-STARTING-***")
extra_args = []
if scene.pov.command_line_switches != "":
for newArg in scene.pov.command_line_switches.split(" "):
extra_args.append(newArg)
if sys.platform[:3] == "win":
if"/EXIT" not in extra_args and not scene.pov.pov_editor:
extra_args.append("/EXIT")
else:
# added -d option to prevent render window popup which leads to segfault on linux
extra_args.append("-d")
# Start Rendering!
try:
if sys.platform[:3] != "win" and scene.pov.sdl_window_enable: #segfault on linux == False !!!
env = {'POV_DISPLAY_SCALED': 'off'}
env.update(os.environ)
self._process = subprocess.Popen([pov_binary, self._temp_file_ini],
stdout=subprocess.PIPE, stderr=subprocess.STDOUT,
env=env)
else:
self._process = subprocess.Popen([pov_binary, self._temp_file_ini] + extra_args,
stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
except OSError:
# TODO, report api
print("POV-Ray 3.7: could not execute '%s'" % pov_binary)
import traceback
traceback.print_exc()
print ("***-DONE-***")
return False
else:
print("Engine ready!...")
print("Command line arguments passed: " + str(extra_args))
#return True
self.update_stats("", "POV-Ray 3.7: Parsing File")
# Indented in main function now so repeated here but still not working
# to bring back render result to its buffer
if os.path.exists(self._temp_file_out):
xmin = int(r.border_min_x * x)
ymin = int(r.border_min_y * y)
xmax = int(r.border_max_x * x)
ymax = int(r.border_max_y * y)
result = self.begin_result(0, 0, x, y)
lay = result.layers[0]
time.sleep(self.DELAY)
try:
lay.load_from_file(self._temp_file_out)
except RuntimeError:
print("***POV ERROR WHILE READING OUTPUT FILE***")
self.end_result(result)
#print(self._temp_file_log) #bring the pov log to blender console with proper path?
with open(self._temp_file_log) as f: # The with keyword automatically closes the file when you are done
print(f.read())
self.update_stats("", "")
if scene.pov.tempfiles_enable or scene.pov.deletefiles_enable:
self._cleanup()
else:
##WIP output format
## if r.image_settings.file_format == 'OPENEXR':
## fformat = 'EXR'
## render.image_settings.color_mode = 'RGBA'
## else:
## fformat = 'TGA'
## r.image_settings.file_format = 'TARGA'
## r.image_settings.color_mode = 'RGBA'
blendSceneName = bpy.data.filepath.split(os.path.sep)[-1].split(".")[0]
povSceneName = ""
povPath = ""
renderImagePath = ""
# has to be called to update the frame on exporting animations
scene.frame_set(scene.frame_current)
if not scene.pov.tempfiles_enable:
# check paths
povPath = bpy.path.abspath(scene.pov.scene_path).replace('\\', '/')
if povPath == "":
if bpy.data.is_saved:
povPath = bpy.path.abspath("//")
else:
povPath = tempfile.gettempdir()
elif povPath.endswith("/"):
if povPath == "/":
povPath = bpy.path.abspath("//")
else:
povPath = bpy.path.abspath(scene.pov.scene_path)
if not os.path.exists(povPath):
try:
os.makedirs(povPath)
except:
import traceback
traceback.print_exc()
print("POV-Ray 3.7: Cannot create scenes directory: %r" % povPath)
self.update_stats("", "POV-Ray 3.7: Cannot create scenes directory %r" % \
povPath)
time.sleep(2.0)
#return
'''
# Bug in POV-Ray RC3
renderImagePath = bpy.path.abspath(scene.pov.renderimage_path).replace('\\','/')
if renderImagePath == "":
if bpy.data.is_saved:
renderImagePath = bpy.path.abspath("//")
else:
renderImagePath = tempfile.gettempdir()
#print("Path: " + renderImagePath)
elif path.endswith("/"):
if renderImagePath == "/":
renderImagePath = bpy.path.abspath("//")
else:
renderImagePath = bpy.path.abspath(scene.pov.renderimage_path)
if not os.path.exists(path):
print("POV-Ray 3.7: Cannot find render image directory")
self.update_stats("", "POV-Ray 3.7: Cannot find render image directory")
time.sleep(2.0)
return
'''
# check name
if scene.pov.scene_name == "":
if blendSceneName != "":
povSceneName = blendSceneName
else:
povSceneName = "untitled"
else:
povSceneName = scene.pov.scene_name
if os.path.isfile(povSceneName):
povSceneName = os.path.basename(povSceneName)
povSceneName = povSceneName.split('/')[-1].split('\\')[-1]
if not povSceneName:
print("POV-Ray 3.7: Invalid scene name")
self.update_stats("", "POV-Ray 3.7: Invalid scene name")
time.sleep(2.0)
#return
povSceneName = os.path.splitext(povSceneName)[0]
print("Scene name: " + povSceneName)
print("Export path: " + povPath)
povPath = os.path.join(povPath, povSceneName)
povPath = os.path.realpath(povPath)
# for now this has to be the same like the pov output. Bug in POV-Ray RC3.
# renderImagePath = renderImagePath + "\\" + povSceneName
renderImagePath = povPath # Bugfix for POV-Ray RC3 bug
# renderImagePath = os.path.realpath(renderImagePath) # Bugfix for POV-Ray RC3 bug
#print("Export path: %s" % povPath)
#print("Render Image path: %s" % renderImagePath)
# start export
self.update_stats("", "POV-Ray 3.7: Exporting data from Blender")
self._export(scene, povPath, renderImagePath)
self.update_stats("", "POV-Ray 3.7: Parsing File")
if not self._render(scene):
self.update_stats("", "POV-Ray 3.7: Not found")
#return
#r = scene.render
# compute resolution
#x = int(r.resolution_x * r.resolution_percentage * 0.01)
#y = int(r.resolution_y * r.resolution_percentage * 0.01)
# Wait for the file to be created
# XXX This is no more valid, as 3.7 always creates output file once render is finished!
parsing = re.compile(br"= \[Parsing\.\.\.\] =")
rendering = re.compile(br"= \[Rendering\.\.\.\] =")
percent = re.compile(r"\(([0-9]{1,3})%\)")
# print("***POV WAITING FOR FILE***")
data = b""
last_line = ""
while _test_wait():
# POV in Windows does not output its stdout/stderr, it displays them in its GUI
if self._is_windows:
self.update_stats("", "POV-Ray 3.7: Rendering File")
else:
t_data = self._process.stdout.read(10000)
if not t_data:
continue
data += t_data
# XXX This is working for UNIX, not sure whether it might need adjustments for
# other OSs
# First replace is for windows
t_data = str(t_data).replace('\\r\\n', '\\n').replace('\\r', '\r')
lines = t_data.split('\\n')
last_line += lines[0]
lines[0] = last_line
print('\n'.join(lines), end="")
last_line = lines[-1]
if rendering.search(data):
_pov_rendering = True
match = percent.findall(str(data))
if match:
self.update_stats("", "POV-Ray 3.7: Rendering File (%s%%)" % match[-1])
else:
self.update_stats("", "POV-Ray 3.7: Rendering File")
elif parsing.search(data):
self.update_stats("", "POV-Ray 3.7: Parsing File")
if os.path.exists(self._temp_file_out):
# print("***POV FILE OK***")
#self.update_stats("", "POV-Ray 3.7: Rendering")
# prev_size = -1
xmin = int(r.border_min_x * x)
ymin = int(r.border_min_y * y)
xmax = int(r.border_max_x * x)
ymax = int(r.border_max_y * y)
# print("***POV UPDATING IMAGE***")
result = self.begin_result(0, 0, x, y)
# XXX, tests for border render.
#result = self.begin_result(xmin, ymin, xmax - xmin, ymax - ymin)
#result = self.begin_result(0, 0, xmax - xmin, ymax - ymin)
lay = result.layers[0]
# This assumes the file has been fully written We wait a bit, just in case!
time.sleep(self.DELAY)
try:
lay.load_from_file(self._temp_file_out)
# XXX, tests for border render.
#lay.load_from_file(self._temp_file_out, xmin, ymin)
except RuntimeError:
print("***POV ERROR WHILE READING OUTPUT FILE***")
# Not needed right now, might only be useful if we find a way to use temp raw output of
# pov 3.7 (in which case it might go under _test_wait()).
'''
def update_image():
# possible the image wont load early on.
try:
lay.load_from_file(self._temp_file_out)
# XXX, tests for border render.
#lay.load_from_file(self._temp_file_out, xmin, ymin)
#lay.load_from_file(self._temp_file_out, xmin, ymin)
except RuntimeError:
pass
# Update while POV-Ray renders
while True:
# print("***POV RENDER LOOP***")
# test if POV-Ray exists
if self._process.poll() is not None:
print("***POV PROCESS FINISHED***")
update_image()
break
# user exit
if self.test_break():
try:
self._process.terminate()
print("***POV PROCESS INTERRUPTED***")
except OSError:
pass
break
# Would be nice to redirect the output
# stdout_value, stderr_value = self._process.communicate() # locks
# check if the file updated
new_size = os.path.getsize(self._temp_file_out)
if new_size != prev_size:
update_image()
prev_size = new_size
time.sleep(self.DELAY)
'''
self.end_result(result)
else:
print("***POV FILE NOT FOUND***")
print("***POV FILE FINISHED***")
#print(filename_log) #bring the pov log to blender console with proper path?
with open(self._temp_file_log) as f: # The with keyword automatically closes the file when you are done
print(f.read())
self.update_stats("", "")
if scene.pov.tempfiles_enable or scene.pov.deletefiles_enable:
self._cleanup()
##################################################################################
#################################Operators########################################
##################################################################################
class RenderPovTexturePreview(Operator):
bl_idname = "tex.preview_update"
bl_label = "Update preview"
def execute(self, context):
tex=bpy.context.object.active_material.active_texture #context.texture
texPrevName=string_strip_hyphen(bpy.path.clean_name(tex.name))+"_prev"
## Make sure Preview directory exists and is empty
if not os.path.isdir(preview_dir):
os.mkdir(preview_dir)
iniPrevFile=os.path.join(preview_dir, "Preview.ini")
inputPrevFile=os.path.join(preview_dir, "Preview.pov")
outputPrevFile=os.path.join(preview_dir, texPrevName)
##################### ini ##########################################
fileIni=open("%s"%iniPrevFile,"w")
fileIni.write('Version=3.7\n')
fileIni.write('Input_File_Name="%s"\n'%inputPrevFile)
fileIni.write('Output_File_Name="%s.png"\n'%outputPrevFile)
fileIni.write('Library_Path="%s"\n' % preview_dir)
fileIni.write('Width=256\n')
fileIni.write('Height=256\n')
fileIni.write('Pause_When_Done=0\n')
fileIni.write('Output_File_Type=N\n')
fileIni.write('Output_Alpha=1\n')
fileIni.write('Antialias=on\n')
fileIni.write('Sampling_Method=2\n')
fileIni.write('Antialias_Depth=3\n')
fileIni.write('-d\n')
fileIni.close()
##################### pov ##########################################
filePov=open("%s"%inputPrevFile,"w")
PATname = "PAT_"+string_strip_hyphen(bpy.path.clean_name(tex.name))
filePov.write("#declare %s = \n"%PATname)
filePov.write(shading.exportPattern(tex, string_strip_hyphen))
filePov.write("#declare Plane =\n")
filePov.write("mesh {\n")
filePov.write(" triangle {<-2.021,-1.744,2.021>,<-2.021,-1.744,-2.021>,<2.021,-1.744,2.021>}\n")
filePov.write(" triangle {<-2.021,-1.744,-2.021>,<2.021,-1.744,-2.021>,<2.021,-1.744,2.021>}\n")
filePov.write(" texture{%s}\n"%PATname)
filePov.write("}\n")
filePov.write("object {Plane}\n")
filePov.write("light_source {\n")
filePov.write(" <0,4.38,-1.92e-07>\n")
filePov.write(" color rgb<4, 4, 4>\n")
filePov.write(" parallel\n")
filePov.write(" point_at <0, 0, -1>\n")
filePov.write("}\n")
filePov.write("camera {\n")
filePov.write(" location <0, 0, 0>\n")
filePov.write(" look_at <0, 0, -1>\n")
filePov.write(" right <-1.0, 0, 0>\n")
filePov.write(" up <0, 1, 0>\n")
filePov.write(" angle 96.805211\n")
filePov.write(" rotate <-90.000003, -0.000000, 0.000000>\n")
filePov.write(" translate <0.000000, 0.000000, 0.000000>\n")
filePov.write("}\n")
filePov.close()
##################### end write ##########################################
pov_binary = PovrayRender._locate_binary()
if sys.platform[:3] == "win":
p1=subprocess.Popen(["%s"%pov_binary,"/EXIT","%s"%iniPrevFile],
stdout=subprocess.PIPE,stderr=subprocess.STDOUT)
else:
p1=subprocess.Popen(["%s"%pov_binary,"-d","%s"%iniPrevFile],
stdout=subprocess.PIPE,stderr=subprocess.STDOUT)
p1.wait()
tex.use_nodes = True
tree = tex.node_tree
links = tree.links
for n in tree.nodes:
tree.nodes.remove(n)
im = tree.nodes.new("TextureNodeImage")
pathPrev="%s.png"%outputPrevFile
im.image = bpy.data.images.load(pathPrev)
name=pathPrev
name=name.split("/")
name=name[len(name)-1]
im.name = name
im.location = 200,200
previewer = tree.nodes.new('TextureNodeOutput')
previewer.label = "Preview"
previewer.location = 400,400
links.new(im.outputs[0],previewer.inputs[0])
#tex.type="IMAGE" # makes clip extend possible
#tex.extension="CLIP"
return {'FINISHED'}
class RunPovTextRender(Operator):
bl_idname = "text.run"
bl_label = "Run"
bl_context = "text"
bl_description = "Run a render with this text only"
def execute(self, context):
scene = context.scene
scene.pov.text_block = context.space_data.text.name
bpy.ops.render.render()
#empty text name property engain
scene.pov.text_block = ""
return {'FINISHED'}