mirror of
https://github.com/apache/httpd.git
synced 2025-07-29 12:37:06 +00:00

git-svn-id: https://svn.apache.org/repos/asf/httpd/httpd/trunk@1837941 13f79535-47bb-0310-9956-ffa450edef68
1121 lines
36 KiB
C
1121 lines
36 KiB
C
/* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
* contributor license agreements. See the NOTICE file distributed with
|
|
* this work for additional information regarding copyright ownership.
|
|
* The ASF licenses this file to You under the Apache License, Version 2.0
|
|
* (the "License"); you may not use this file except in compliance with
|
|
* the License. You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define APR_WANT_STRFUNC
|
|
#include "apr_want.h"
|
|
#include "apr_lib.h"
|
|
#include "apr_hash.h"
|
|
#include "apr_strings.h"
|
|
|
|
#include "httpd.h"
|
|
#include "http_config.h"
|
|
#include "http_core.h"
|
|
#include "http_log.h"
|
|
#include "http_request.h"
|
|
#include "util_filter.h"
|
|
|
|
/* NOTE: Apache's current design doesn't allow a pool to be passed thru,
|
|
so we depend on a global to hold the correct pool
|
|
*/
|
|
#define FILTER_POOL apr_hook_global_pool
|
|
#include "ap_hooks.h" /* for apr_hook_global_pool */
|
|
|
|
/*
|
|
** This macro returns true/false if a given filter should be inserted BEFORE
|
|
** another filter. This will happen when one of: 1) there isn't another
|
|
** filter; 2) that filter has a higher filter type (class); 3) that filter
|
|
** corresponds to a different request.
|
|
*/
|
|
#define INSERT_BEFORE(f, before_this) ((before_this) == NULL \
|
|
|| (before_this)->frec->ftype > (f)->frec->ftype \
|
|
|| (before_this)->r != (f)->r)
|
|
|
|
/* Trie structure to hold the mapping from registered
|
|
* filter names to filters
|
|
*/
|
|
|
|
/* we know core's module_index is 0 */
|
|
#undef APLOG_MODULE_INDEX
|
|
#define APLOG_MODULE_INDEX AP_CORE_MODULE_INDEX
|
|
|
|
typedef struct filter_trie_node filter_trie_node;
|
|
|
|
typedef struct {
|
|
int c;
|
|
filter_trie_node *child;
|
|
} filter_trie_child_ptr;
|
|
|
|
/* Each trie node has an array of pointers to its children.
|
|
* The array is kept in sorted order so that add_any_filter()
|
|
* can do a binary search
|
|
*/
|
|
struct filter_trie_node {
|
|
ap_filter_rec_t *frec;
|
|
filter_trie_child_ptr *children;
|
|
int nchildren;
|
|
int size;
|
|
};
|
|
|
|
#define TRIE_INITIAL_SIZE 4
|
|
|
|
/* Link a trie node to its parent
|
|
*/
|
|
static void trie_node_link(apr_pool_t *p, filter_trie_node *parent,
|
|
filter_trie_node *child, int c)
|
|
{
|
|
int i, j;
|
|
|
|
if (parent->nchildren == parent->size) {
|
|
filter_trie_child_ptr *new;
|
|
parent->size *= 2;
|
|
new = (filter_trie_child_ptr *)apr_palloc(p, parent->size *
|
|
sizeof(filter_trie_child_ptr));
|
|
memcpy(new, parent->children, parent->nchildren *
|
|
sizeof(filter_trie_child_ptr));
|
|
parent->children = new;
|
|
}
|
|
|
|
for (i = 0; i < parent->nchildren; i++) {
|
|
if (c == parent->children[i].c) {
|
|
return;
|
|
}
|
|
else if (c < parent->children[i].c) {
|
|
break;
|
|
}
|
|
}
|
|
for (j = parent->nchildren; j > i; j--) {
|
|
parent->children[j].c = parent->children[j - 1].c;
|
|
parent->children[j].child = parent->children[j - 1].child;
|
|
}
|
|
parent->children[i].c = c;
|
|
parent->children[i].child = child;
|
|
|
|
parent->nchildren++;
|
|
}
|
|
|
|
/* Allocate a new node for a trie.
|
|
* If parent is non-NULL, link the new node under the parent node with
|
|
* key 'c' (or, if an existing child node matches, return that one)
|
|
*/
|
|
static filter_trie_node *trie_node_alloc(apr_pool_t *p,
|
|
filter_trie_node *parent, char c)
|
|
{
|
|
filter_trie_node *new_node;
|
|
if (parent) {
|
|
int i;
|
|
for (i = 0; i < parent->nchildren; i++) {
|
|
if (c == parent->children[i].c) {
|
|
return parent->children[i].child;
|
|
}
|
|
else if (c < parent->children[i].c) {
|
|
break;
|
|
}
|
|
}
|
|
new_node =
|
|
(filter_trie_node *)apr_palloc(p, sizeof(filter_trie_node));
|
|
trie_node_link(p, parent, new_node, c);
|
|
}
|
|
else { /* No parent node */
|
|
new_node = (filter_trie_node *)apr_palloc(p,
|
|
sizeof(filter_trie_node));
|
|
}
|
|
|
|
new_node->frec = NULL;
|
|
new_node->nchildren = 0;
|
|
new_node->size = TRIE_INITIAL_SIZE;
|
|
new_node->children = (filter_trie_child_ptr *)apr_palloc(p,
|
|
new_node->size * sizeof(filter_trie_child_ptr));
|
|
return new_node;
|
|
}
|
|
|
|
static filter_trie_node *registered_output_filters = NULL;
|
|
static filter_trie_node *registered_input_filters = NULL;
|
|
|
|
|
|
static apr_status_t filter_cleanup(void *ctx)
|
|
{
|
|
registered_output_filters = NULL;
|
|
registered_input_filters = NULL;
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
static ap_filter_rec_t *get_filter_handle(const char *name,
|
|
const filter_trie_node *filter_set)
|
|
{
|
|
if (filter_set) {
|
|
const char *n;
|
|
const filter_trie_node *node;
|
|
|
|
node = filter_set;
|
|
for (n = name; *n; n++) {
|
|
int start, end;
|
|
start = 0;
|
|
end = node->nchildren - 1;
|
|
while (end >= start) {
|
|
int middle = (end + start) / 2;
|
|
char ch = node->children[middle].c;
|
|
if (*n == ch) {
|
|
node = node->children[middle].child;
|
|
break;
|
|
}
|
|
else if (*n < ch) {
|
|
end = middle - 1;
|
|
}
|
|
else {
|
|
start = middle + 1;
|
|
}
|
|
}
|
|
if (end < start) {
|
|
node = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (node && node->frec) {
|
|
return node->frec;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
AP_DECLARE(ap_filter_rec_t *)ap_get_output_filter_handle(const char *name)
|
|
{
|
|
return get_filter_handle(name, registered_output_filters);
|
|
}
|
|
|
|
AP_DECLARE(ap_filter_rec_t *)ap_get_input_filter_handle(const char *name)
|
|
{
|
|
return get_filter_handle(name, registered_input_filters);
|
|
}
|
|
|
|
static ap_filter_rec_t *register_filter(const char *name,
|
|
ap_filter_func filter_func,
|
|
ap_init_filter_func filter_init,
|
|
ap_filter_type ftype,
|
|
ap_filter_direction_e direction,
|
|
filter_trie_node **reg_filter_set)
|
|
{
|
|
ap_filter_rec_t *frec;
|
|
char *normalized_name;
|
|
const char *n;
|
|
filter_trie_node *node;
|
|
|
|
if (!*reg_filter_set) {
|
|
*reg_filter_set = trie_node_alloc(FILTER_POOL, NULL, 0);
|
|
}
|
|
|
|
normalized_name = apr_pstrdup(FILTER_POOL, name);
|
|
ap_str_tolower(normalized_name);
|
|
|
|
node = *reg_filter_set;
|
|
for (n = normalized_name; *n; n++) {
|
|
filter_trie_node *child = trie_node_alloc(FILTER_POOL, node, *n);
|
|
if (apr_isalpha(*n)) {
|
|
trie_node_link(FILTER_POOL, node, child, apr_toupper(*n));
|
|
}
|
|
node = child;
|
|
}
|
|
if (node->frec) {
|
|
frec = node->frec;
|
|
}
|
|
else {
|
|
frec = apr_pcalloc(FILTER_POOL, sizeof(*frec));
|
|
node->frec = frec;
|
|
frec->name = normalized_name;
|
|
}
|
|
frec->filter_func = filter_func;
|
|
frec->filter_init_func = filter_init;
|
|
frec->ftype = ftype;
|
|
frec->direction = direction;
|
|
|
|
apr_pool_cleanup_register(FILTER_POOL, NULL, filter_cleanup,
|
|
apr_pool_cleanup_null);
|
|
return frec;
|
|
}
|
|
|
|
AP_DECLARE(ap_filter_rec_t *) ap_register_input_filter(const char *name,
|
|
ap_in_filter_func filter_func,
|
|
ap_init_filter_func filter_init,
|
|
ap_filter_type ftype)
|
|
{
|
|
ap_filter_func f;
|
|
f.in_func = filter_func;
|
|
return register_filter(name, f, filter_init, ftype, AP_FILTER_INPUT,
|
|
®istered_input_filters);
|
|
}
|
|
|
|
AP_DECLARE(ap_filter_rec_t *) ap_register_output_filter(const char *name,
|
|
ap_out_filter_func filter_func,
|
|
ap_init_filter_func filter_init,
|
|
ap_filter_type ftype)
|
|
{
|
|
return ap_register_output_filter_protocol(name, filter_func,
|
|
filter_init, ftype, 0);
|
|
}
|
|
|
|
AP_DECLARE(ap_filter_rec_t *) ap_register_output_filter_protocol(
|
|
const char *name,
|
|
ap_out_filter_func filter_func,
|
|
ap_init_filter_func filter_init,
|
|
ap_filter_type ftype,
|
|
unsigned int proto_flags)
|
|
{
|
|
ap_filter_rec_t* ret ;
|
|
ap_filter_func f;
|
|
f.out_func = filter_func;
|
|
ret = register_filter(name, f, filter_init, ftype, AP_FILTER_OUTPUT,
|
|
®istered_output_filters);
|
|
ret->proto_flags = proto_flags ;
|
|
return ret ;
|
|
}
|
|
|
|
static ap_filter_t *add_any_filter_handle(ap_filter_rec_t *frec, void *ctx,
|
|
request_rec *r, conn_rec *c,
|
|
ap_filter_t **r_filters,
|
|
ap_filter_t **p_filters,
|
|
ap_filter_t **c_filters)
|
|
{
|
|
apr_pool_t *p = frec->ftype < AP_FTYPE_CONNECTION && r ? r->pool : c->pool;
|
|
ap_filter_t *f = apr_pcalloc(p, sizeof(*f));
|
|
ap_filter_t **outf;
|
|
|
|
if (frec->ftype < AP_FTYPE_PROTOCOL) {
|
|
if (r) {
|
|
outf = r_filters;
|
|
}
|
|
else {
|
|
ap_log_cerror(APLOG_MARK, APLOG_ERR, 0, c, APLOGNO(00080)
|
|
"a content filter was added without a request: %s", frec->name);
|
|
return NULL;
|
|
}
|
|
}
|
|
else if (frec->ftype < AP_FTYPE_CONNECTION) {
|
|
if (r) {
|
|
outf = p_filters;
|
|
}
|
|
else {
|
|
ap_log_cerror(APLOG_MARK, APLOG_ERR, 0, c, APLOGNO(00081)
|
|
"a protocol filter was added without a request: %s", frec->name);
|
|
return NULL;
|
|
}
|
|
}
|
|
else {
|
|
outf = c_filters;
|
|
}
|
|
|
|
f->frec = frec;
|
|
f->ctx = ctx;
|
|
/* f->r must always be NULL for connection filters */
|
|
f->r = frec->ftype < AP_FTYPE_CONNECTION ? r : NULL;
|
|
f->c = c;
|
|
APR_RING_ELEM_INIT(f, pending);
|
|
|
|
if (INSERT_BEFORE(f, *outf)) {
|
|
f->next = *outf;
|
|
|
|
if (*outf) {
|
|
ap_filter_t *first = NULL;
|
|
|
|
if (r) {
|
|
/* If we are adding our first non-connection filter,
|
|
* Then don't try to find the right location, it is
|
|
* automatically first.
|
|
*/
|
|
if (*r_filters != *c_filters) {
|
|
first = *r_filters;
|
|
while (first && (first->next != (*outf))) {
|
|
first = first->next;
|
|
}
|
|
}
|
|
}
|
|
if (first && first != (*outf)) {
|
|
first->next = f;
|
|
}
|
|
}
|
|
*outf = f;
|
|
}
|
|
else {
|
|
ap_filter_t *fscan = *outf;
|
|
while (!INSERT_BEFORE(f, fscan->next))
|
|
fscan = fscan->next;
|
|
|
|
f->next = fscan->next;
|
|
fscan->next = f;
|
|
}
|
|
|
|
if (frec->ftype < AP_FTYPE_CONNECTION && (*r_filters == *c_filters)) {
|
|
*r_filters = *p_filters;
|
|
}
|
|
return f;
|
|
}
|
|
|
|
static ap_filter_t *add_any_filter(const char *name, void *ctx,
|
|
request_rec *r, conn_rec *c,
|
|
const filter_trie_node *reg_filter_set,
|
|
ap_filter_t **r_filters,
|
|
ap_filter_t **p_filters,
|
|
ap_filter_t **c_filters)
|
|
{
|
|
if (reg_filter_set) {
|
|
const char *n;
|
|
const filter_trie_node *node;
|
|
|
|
node = reg_filter_set;
|
|
for (n = name; *n; n++) {
|
|
int start, end;
|
|
start = 0;
|
|
end = node->nchildren - 1;
|
|
while (end >= start) {
|
|
int middle = (end + start) / 2;
|
|
char ch = node->children[middle].c;
|
|
if (*n == ch) {
|
|
node = node->children[middle].child;
|
|
break;
|
|
}
|
|
else if (*n < ch) {
|
|
end = middle - 1;
|
|
}
|
|
else {
|
|
start = middle + 1;
|
|
}
|
|
}
|
|
if (end < start) {
|
|
node = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (node && node->frec) {
|
|
return add_any_filter_handle(node->frec, ctx, r, c, r_filters,
|
|
p_filters, c_filters);
|
|
}
|
|
}
|
|
|
|
ap_log_cerror(APLOG_MARK, APLOG_ERR, 0, r ? r->connection : c, APLOGNO(00082)
|
|
"an unknown filter was not added: %s", name);
|
|
return NULL;
|
|
}
|
|
|
|
AP_DECLARE(ap_filter_t *) ap_add_input_filter(const char *name, void *ctx,
|
|
request_rec *r, conn_rec *c)
|
|
{
|
|
return add_any_filter(name, ctx, r, c, registered_input_filters,
|
|
r ? &r->input_filters : NULL,
|
|
r ? &r->proto_input_filters : NULL, &c->input_filters);
|
|
}
|
|
|
|
AP_DECLARE(ap_filter_t *) ap_add_input_filter_handle(ap_filter_rec_t *f,
|
|
void *ctx,
|
|
request_rec *r,
|
|
conn_rec *c)
|
|
{
|
|
return add_any_filter_handle(f, ctx, r, c, r ? &r->input_filters : NULL,
|
|
r ? &r->proto_input_filters : NULL,
|
|
&c->input_filters);
|
|
}
|
|
|
|
AP_DECLARE(ap_filter_t *) ap_add_output_filter(const char *name, void *ctx,
|
|
request_rec *r, conn_rec *c)
|
|
{
|
|
return add_any_filter(name, ctx, r, c, registered_output_filters,
|
|
r ? &r->output_filters : NULL,
|
|
r ? &r->proto_output_filters : NULL, &c->output_filters);
|
|
}
|
|
|
|
AP_DECLARE(ap_filter_t *) ap_add_output_filter_handle(ap_filter_rec_t *f,
|
|
void *ctx,
|
|
request_rec *r,
|
|
conn_rec *c)
|
|
{
|
|
return add_any_filter_handle(f, ctx, r, c, r ? &r->output_filters : NULL,
|
|
r ? &r->proto_output_filters : NULL,
|
|
&c->output_filters);
|
|
}
|
|
|
|
static APR_INLINE int is_pending_filter(ap_filter_t *f)
|
|
{
|
|
return APR_RING_NEXT(f, pending) != f;
|
|
}
|
|
|
|
static apr_status_t pending_filter_cleanup(void *arg)
|
|
{
|
|
ap_filter_t *f = arg;
|
|
|
|
APR_RING_REMOVE(f, pending);
|
|
APR_RING_ELEM_INIT(f, pending);
|
|
f->bb = NULL;
|
|
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
static void remove_any_filter(ap_filter_t *f, ap_filter_t **r_filt, ap_filter_t **p_filt,
|
|
ap_filter_t **c_filt)
|
|
{
|
|
ap_filter_t **curr = r_filt ? r_filt : c_filt;
|
|
ap_filter_t *fscan = *curr;
|
|
|
|
if (is_pending_filter(f)) {
|
|
apr_pool_cleanup_run(f->c->pool, f, pending_filter_cleanup);
|
|
}
|
|
|
|
if (p_filt && *p_filt == f)
|
|
*p_filt = (*p_filt)->next;
|
|
|
|
if (*curr == f) {
|
|
*curr = (*curr)->next;
|
|
return;
|
|
}
|
|
|
|
while (fscan->next != f) {
|
|
if (!(fscan = fscan->next)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
fscan->next = f->next;
|
|
}
|
|
|
|
AP_DECLARE(void) ap_remove_input_filter(ap_filter_t *f)
|
|
{
|
|
remove_any_filter(f, f->r ? &f->r->input_filters : NULL,
|
|
f->r ? &f->r->proto_input_filters : NULL,
|
|
&f->c->input_filters);
|
|
}
|
|
|
|
AP_DECLARE(void) ap_remove_output_filter(ap_filter_t *f)
|
|
{
|
|
|
|
if ((f->bb) && !APR_BRIGADE_EMPTY(f->bb)) {
|
|
apr_brigade_cleanup(f->bb);
|
|
}
|
|
|
|
if (f->deferred_pool) {
|
|
apr_pool_destroy(f->deferred_pool);
|
|
f->deferred_pool = NULL;
|
|
}
|
|
|
|
remove_any_filter(f, f->r ? &f->r->output_filters : NULL,
|
|
f->r ? &f->r->proto_output_filters : NULL,
|
|
&f->c->output_filters);
|
|
}
|
|
|
|
AP_DECLARE(apr_status_t) ap_remove_input_filter_byhandle(ap_filter_t *next,
|
|
const char *handle)
|
|
{
|
|
ap_filter_t *found = NULL;
|
|
ap_filter_rec_t *filter;
|
|
|
|
if (!handle) {
|
|
return APR_EINVAL;
|
|
}
|
|
filter = ap_get_input_filter_handle(handle);
|
|
if (!filter) {
|
|
return APR_NOTFOUND;
|
|
}
|
|
|
|
while (next) {
|
|
if (next->frec == filter) {
|
|
found = next;
|
|
break;
|
|
}
|
|
next = next->next;
|
|
}
|
|
if (found) {
|
|
ap_remove_input_filter(found);
|
|
return APR_SUCCESS;
|
|
}
|
|
return APR_NOTFOUND;
|
|
}
|
|
|
|
AP_DECLARE(apr_status_t) ap_remove_output_filter_byhandle(ap_filter_t *next,
|
|
const char *handle)
|
|
{
|
|
ap_filter_t *found = NULL;
|
|
ap_filter_rec_t *filter;
|
|
|
|
if (!handle) {
|
|
return APR_EINVAL;
|
|
}
|
|
filter = ap_get_output_filter_handle(handle);
|
|
if (!filter) {
|
|
return APR_NOTFOUND;
|
|
}
|
|
|
|
while (next) {
|
|
if (next->frec == filter) {
|
|
found = next;
|
|
break;
|
|
}
|
|
next = next->next;
|
|
}
|
|
if (found) {
|
|
ap_remove_output_filter(found);
|
|
return APR_SUCCESS;
|
|
}
|
|
return APR_NOTFOUND;
|
|
}
|
|
|
|
|
|
/*
|
|
* Read data from the next filter in the filter stack. Data should be
|
|
* modified in the bucket brigade that is passed in. The core allocates the
|
|
* bucket brigade, modules that wish to replace large chunks of data or to
|
|
* save data off to the side should probably create their own temporary
|
|
* brigade especially for that use.
|
|
*/
|
|
AP_DECLARE(apr_status_t) ap_get_brigade(ap_filter_t *next,
|
|
apr_bucket_brigade *bb,
|
|
ap_input_mode_t mode,
|
|
apr_read_type_e block,
|
|
apr_off_t readbytes)
|
|
{
|
|
if (next) {
|
|
return next->frec->filter_func.in_func(next, bb, mode, block,
|
|
readbytes);
|
|
}
|
|
return AP_NOBODY_READ;
|
|
}
|
|
|
|
/* Pass the buckets to the next filter in the filter stack. If the
|
|
* current filter is a handler, we should get NULL passed in instead of
|
|
* the current filter. At that point, we can just call the first filter in
|
|
* the stack, or r->output_filters.
|
|
*/
|
|
AP_DECLARE(apr_status_t) ap_pass_brigade(ap_filter_t *next,
|
|
apr_bucket_brigade *bb)
|
|
{
|
|
if (next) {
|
|
apr_bucket *e = APR_BRIGADE_LAST(bb);
|
|
|
|
if (e != APR_BRIGADE_SENTINEL(bb) && APR_BUCKET_IS_EOS(e) && next->r) {
|
|
/* This is only safe because HTTP_HEADER filter is always in
|
|
* the filter stack. This ensures that there is ALWAYS a
|
|
* request-based filter that we can attach this to. If the
|
|
* HTTP_FILTER is removed, and another filter is not put in its
|
|
* place, then handlers like mod_cgi, which attach their own
|
|
* EOS bucket to the brigade will be broken, because we will
|
|
* get two EOS buckets on the same request.
|
|
*/
|
|
next->r->eos_sent = 1;
|
|
|
|
/* remember the eos for internal redirects, too */
|
|
if (next->r->prev) {
|
|
request_rec *prev = next->r->prev;
|
|
|
|
while (prev) {
|
|
prev->eos_sent = 1;
|
|
prev = prev->prev;
|
|
}
|
|
}
|
|
}
|
|
return next->frec->filter_func.out_func(next, bb);
|
|
}
|
|
return AP_NOBODY_WROTE;
|
|
}
|
|
|
|
/* Pass the buckets to the next filter in the filter stack
|
|
* checking return status for filter errors.
|
|
* returns: OK if ap_pass_brigade returns APR_SUCCESS
|
|
* AP_FILTER_ERROR if filter error exists
|
|
* HTTP_INTERNAL_SERVER_ERROR for all other cases
|
|
* logged with optional errmsg
|
|
*/
|
|
AP_DECLARE(apr_status_t) ap_pass_brigade_fchk(request_rec *r,
|
|
apr_bucket_brigade *bb,
|
|
const char *fmt,
|
|
...)
|
|
{
|
|
apr_status_t rv;
|
|
|
|
rv = ap_pass_brigade(r->output_filters, bb);
|
|
if (rv != APR_SUCCESS) {
|
|
if (rv != AP_FILTER_ERROR) {
|
|
if (!fmt)
|
|
ap_log_rerror(APLOG_MARK, APLOG_DEBUG, rv, r, APLOGNO(00083)
|
|
"ap_pass_brigade returned %d", rv);
|
|
else {
|
|
va_list ap;
|
|
const char *res;
|
|
va_start(ap, fmt);
|
|
res = apr_pvsprintf(r->pool, fmt, ap);
|
|
va_end(ap);
|
|
ap_log_rerror(APLOG_MARK, APLOG_DEBUG, rv, r, APLOGNO(03158)
|
|
"%s", res);
|
|
}
|
|
return HTTP_INTERNAL_SERVER_ERROR;
|
|
}
|
|
return AP_FILTER_ERROR;
|
|
}
|
|
return OK;
|
|
}
|
|
|
|
AP_DECLARE(apr_status_t) ap_save_brigade(ap_filter_t *f,
|
|
apr_bucket_brigade **saveto,
|
|
apr_bucket_brigade **b, apr_pool_t *p)
|
|
{
|
|
apr_bucket *e;
|
|
apr_status_t rv, srv = APR_SUCCESS;
|
|
|
|
/* If have never stored any data in the filter, then we had better
|
|
* create an empty bucket brigade so that we can concat. Register
|
|
* a cleanup to zero out the pointer if the pool is cleared.
|
|
*/
|
|
if (!(*saveto)) {
|
|
*saveto = apr_brigade_create(p, f->c->bucket_alloc);
|
|
}
|
|
|
|
for (e = APR_BRIGADE_FIRST(*b);
|
|
e != APR_BRIGADE_SENTINEL(*b);
|
|
e = APR_BUCKET_NEXT(e))
|
|
{
|
|
rv = apr_bucket_setaside(e, p);
|
|
|
|
/* If the bucket type does not implement setaside, then
|
|
* (hopefully) morph it into a bucket type which does, and set
|
|
* *that* aside... */
|
|
if (rv == APR_ENOTIMPL) {
|
|
const char *s;
|
|
apr_size_t n;
|
|
|
|
rv = apr_bucket_read(e, &s, &n, APR_BLOCK_READ);
|
|
if (rv == APR_SUCCESS) {
|
|
rv = apr_bucket_setaside(e, p);
|
|
}
|
|
}
|
|
|
|
if (rv != APR_SUCCESS) {
|
|
srv = rv;
|
|
/* Return an error but still save the brigade if
|
|
* ->setaside() is really not implemented. */
|
|
if (rv != APR_ENOTIMPL) {
|
|
return rv;
|
|
}
|
|
}
|
|
}
|
|
APR_BRIGADE_CONCAT(*saveto, *b);
|
|
return srv;
|
|
}
|
|
|
|
AP_DECLARE(int) ap_filter_prepare_brigade(ap_filter_t *f, apr_pool_t **p)
|
|
{
|
|
apr_pool_t *pool;
|
|
ap_filter_t *next, *e;
|
|
ap_filter_t *found = NULL;
|
|
|
|
pool = f->r ? f->r->pool : f->c->pool;
|
|
if (p) {
|
|
*p = pool;
|
|
}
|
|
if (!f->bb) {
|
|
f->bb = apr_brigade_create(pool, f->c->bucket_alloc);
|
|
apr_pool_cleanup_register(pool, f, pending_filter_cleanup,
|
|
apr_pool_cleanup_null);
|
|
}
|
|
if (is_pending_filter(f)) {
|
|
return DECLINED;
|
|
}
|
|
|
|
/* Pending reads/writes must happen in the same order as input/output
|
|
* filters, so find the first "next" filter already in place and insert
|
|
* before it, if any, otherwise insert last.
|
|
*/
|
|
if (f->c->pending_filters) {
|
|
for (next = f->next; next && !found; next = next->next) {
|
|
for (e = APR_RING_FIRST(f->c->pending_filters);
|
|
e != APR_RING_SENTINEL(f->c->pending_filters,
|
|
ap_filter_t, pending);
|
|
e = APR_RING_NEXT(e, pending)) {
|
|
if (e == next) {
|
|
found = e;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
f->c->pending_filters = apr_palloc(f->c->pool,
|
|
sizeof(*f->c->pending_filters));
|
|
APR_RING_INIT(f->c->pending_filters, ap_filter_t, pending);
|
|
}
|
|
if (found) {
|
|
APR_RING_INSERT_BEFORE(found, f, pending);
|
|
}
|
|
else {
|
|
APR_RING_INSERT_TAIL(f->c->pending_filters, f, ap_filter_t, pending);
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
AP_DECLARE(apr_status_t) ap_filter_setaside_brigade(ap_filter_t *f,
|
|
apr_bucket_brigade *bb)
|
|
{
|
|
ap_log_cerror(APLOG_MARK, APLOG_TRACE6, 0, f->c,
|
|
"setaside %s brigade to %s brigade in '%s' output filter",
|
|
APR_BRIGADE_EMPTY(bb) ? "empty" : "full",
|
|
(!f->bb || APR_BRIGADE_EMPTY(f->bb)) ? "empty" : "full",
|
|
f->frec->name);
|
|
|
|
if (!APR_BRIGADE_EMPTY(bb)) {
|
|
/*
|
|
* Set aside the brigade bb within f->bb.
|
|
*/
|
|
ap_filter_prepare_brigade(f, NULL);
|
|
|
|
/* decide what pool we setaside to, request pool or deferred pool? */
|
|
if (f->r) {
|
|
apr_bucket *e;
|
|
for (e = APR_BRIGADE_FIRST(bb); e != APR_BRIGADE_SENTINEL(bb); e =
|
|
APR_BUCKET_NEXT(e)) {
|
|
if (APR_BUCKET_IS_TRANSIENT(e)) {
|
|
int rv = apr_bucket_setaside(e, f->r->pool);
|
|
if (rv != APR_SUCCESS) {
|
|
return rv;
|
|
}
|
|
}
|
|
}
|
|
APR_BRIGADE_CONCAT(f->bb, bb);
|
|
}
|
|
else {
|
|
if (!f->deferred_pool) {
|
|
apr_pool_create(&f->deferred_pool, f->c->pool);
|
|
apr_pool_tag(f->deferred_pool, "deferred_pool");
|
|
}
|
|
return ap_save_brigade(f, &f->bb, &bb, f->deferred_pool);
|
|
}
|
|
|
|
}
|
|
else if (f->deferred_pool) {
|
|
/*
|
|
* There are no more requests in the pipeline. We can just clear the
|
|
* pool.
|
|
*/
|
|
apr_brigade_cleanup(f->bb);
|
|
apr_pool_clear(f->deferred_pool);
|
|
}
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
AP_DECLARE(apr_status_t) ap_filter_reinstate_brigade(ap_filter_t *f,
|
|
apr_bucket_brigade *bb,
|
|
apr_bucket **flush_upto)
|
|
{
|
|
apr_bucket *bucket, *next;
|
|
apr_size_t bytes_in_brigade, non_file_bytes_in_brigade;
|
|
int eor_buckets_in_brigade, morphing_bucket_in_brigade;
|
|
core_server_config *conf;
|
|
|
|
ap_log_cerror(APLOG_MARK, APLOG_TRACE6, 0, f->c,
|
|
"reinstate %s brigade to %s brigade in '%s' output filter",
|
|
(!f->bb || APR_BRIGADE_EMPTY(f->bb) ? "empty" : "full"),
|
|
(APR_BRIGADE_EMPTY(bb) ? "empty" : "full"),
|
|
f->frec->name);
|
|
|
|
if (f->bb) {
|
|
APR_BRIGADE_PREPEND(bb, f->bb);
|
|
}
|
|
if (!flush_upto) {
|
|
/* Just prepend all. */
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
*flush_upto = NULL;
|
|
|
|
/*
|
|
* Determine if and up to which bucket we need to do a blocking write:
|
|
*
|
|
* a) The brigade contains a flush bucket: Do a blocking write
|
|
* of everything up that point.
|
|
*
|
|
* b) The request is in CONN_STATE_HANDLER state, and the brigade
|
|
* contains at least flush_max_threshold bytes in non-file
|
|
* buckets: Do blocking writes until the amount of data in the
|
|
* buffer is less than flush_max_threshold. (The point of this
|
|
* rule is to provide flow control, in case a handler is
|
|
* streaming out lots of data faster than the data can be
|
|
* sent to the client.)
|
|
*
|
|
* c) The request is in CONN_STATE_HANDLER state, and the brigade
|
|
* contains at least flush_max_pipelined EOR buckets:
|
|
* Do blocking writes until less than flush_max_pipelined EOR
|
|
* buckets are left. (The point of this rule is to prevent too many
|
|
* FDs being kept open by pipelined requests, possibly allowing a
|
|
* DoS).
|
|
*
|
|
* d) The request is being served by a connection filter and the
|
|
* brigade contains a morphing bucket: If there was no other
|
|
* reason to do a blocking write yet, try reading the bucket. If its
|
|
* contents fit into memory before flush_max_threshold is reached,
|
|
* everything is fine. Otherwise we need to do a blocking write the
|
|
* up to and including the morphing bucket, because ap_save_brigade()
|
|
* would read the whole bucket into memory later on.
|
|
*/
|
|
|
|
bytes_in_brigade = 0;
|
|
non_file_bytes_in_brigade = 0;
|
|
eor_buckets_in_brigade = 0;
|
|
morphing_bucket_in_brigade = 0;
|
|
|
|
conf = ap_get_core_module_config(f->c->base_server->module_config);
|
|
|
|
for (bucket = APR_BRIGADE_FIRST(bb); bucket != APR_BRIGADE_SENTINEL(bb);
|
|
bucket = next) {
|
|
next = APR_BUCKET_NEXT(bucket);
|
|
|
|
if (!APR_BUCKET_IS_METADATA(bucket)) {
|
|
if (bucket->length == (apr_size_t)-1) {
|
|
/*
|
|
* A setaside of morphing buckets would read everything into
|
|
* memory. Instead, we will flush everything up to and
|
|
* including this bucket.
|
|
*/
|
|
morphing_bucket_in_brigade = 1;
|
|
}
|
|
else {
|
|
bytes_in_brigade += bucket->length;
|
|
if (!APR_BUCKET_IS_FILE(bucket))
|
|
non_file_bytes_in_brigade += bucket->length;
|
|
}
|
|
}
|
|
else if (AP_BUCKET_IS_EOR(bucket)) {
|
|
eor_buckets_in_brigade++;
|
|
}
|
|
|
|
if (APR_BUCKET_IS_FLUSH(bucket)
|
|
|| non_file_bytes_in_brigade >= conf->flush_max_threshold
|
|
|| (!f->r && morphing_bucket_in_brigade)
|
|
|| eor_buckets_in_brigade > conf->flush_max_pipelined) {
|
|
/* this segment of the brigade MUST be sent before returning. */
|
|
|
|
if (APLOGctrace6(f->c)) {
|
|
char *reason = APR_BUCKET_IS_FLUSH(bucket) ?
|
|
"FLUSH bucket" :
|
|
(non_file_bytes_in_brigade >= conf->flush_max_threshold) ?
|
|
"max threshold" :
|
|
(!f->r && morphing_bucket_in_brigade) ? "morphing bucket" :
|
|
"max requests in pipeline";
|
|
ap_log_cerror(APLOG_MARK, APLOG_TRACE6, 0, f->c,
|
|
"will flush because of %s", reason);
|
|
ap_log_cerror(APLOG_MARK, APLOG_TRACE8, 0, f->c,
|
|
"seen in brigade%s: bytes: %" APR_SIZE_T_FMT
|
|
", non-file bytes: %" APR_SIZE_T_FMT ", eor "
|
|
"buckets: %d, morphing buckets: %d",
|
|
*flush_upto == NULL ? " so far"
|
|
: " since last flush point",
|
|
bytes_in_brigade,
|
|
non_file_bytes_in_brigade,
|
|
eor_buckets_in_brigade,
|
|
morphing_bucket_in_brigade);
|
|
}
|
|
/*
|
|
* Defer the actual blocking write to avoid doing many writes.
|
|
*/
|
|
*flush_upto = next;
|
|
|
|
bytes_in_brigade = 0;
|
|
non_file_bytes_in_brigade = 0;
|
|
eor_buckets_in_brigade = 0;
|
|
morphing_bucket_in_brigade = 0;
|
|
}
|
|
}
|
|
|
|
ap_log_cerror(APLOG_MARK, APLOG_TRACE8, 0, f->c,
|
|
"brigade contains: bytes: %" APR_SIZE_T_FMT
|
|
", non-file bytes: %" APR_SIZE_T_FMT
|
|
", eor buckets: %d, morphing buckets: %d",
|
|
bytes_in_brigade, non_file_bytes_in_brigade,
|
|
eor_buckets_in_brigade, morphing_bucket_in_brigade);
|
|
|
|
return APR_SUCCESS;
|
|
}
|
|
|
|
AP_DECLARE(int) ap_filter_should_yield(ap_filter_t *f)
|
|
{
|
|
/*
|
|
* Handle the AsyncFilter directive. We limit the filters that are
|
|
* eligible for asynchronous handling here.
|
|
*/
|
|
if (f->frec->ftype < f->c->async_filter) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function decides whether a filter should yield due to buffered
|
|
* data in a downstream filter. If a downstream filter buffers we
|
|
* must back off so we don't overwhelm the server. If this function
|
|
* returns true, the filter should call ap_filter_setaside_brigade()
|
|
* to save unprocessed buckets, and then reinstate those buckets on
|
|
* the next call with ap_filter_reinstate_brigade() and continue
|
|
* where it left off.
|
|
*
|
|
* If this function is forced to return zero, we return back to
|
|
* synchronous filter behaviour.
|
|
*
|
|
* Subrequests present us with a problem - we don't know how much data
|
|
* they will produce and therefore how much buffering we'll need, and
|
|
* if a subrequest had to trigger buffering, but next subrequest wouldn't
|
|
* know when the previous one had finished sending data and buckets
|
|
* could be sent out of order.
|
|
*
|
|
* In the case of subrequests, deny the ability to yield. When the data
|
|
* reaches the filters from the main request, they will be setaside
|
|
* there in the right order and the request will be given the
|
|
* opportunity to yield.
|
|
*/
|
|
if (f->r && f->r->main) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is either a main request or internal redirect, or it is a
|
|
* connection filter. Yield if there is any buffered data downstream
|
|
* from us.
|
|
*/
|
|
while (f) {
|
|
if (f->bb && !APR_BRIGADE_EMPTY(f->bb)) {
|
|
return 1;
|
|
}
|
|
f = f->next;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
AP_DECLARE_NONSTD(int) ap_filter_output_pending(conn_rec *c)
|
|
{
|
|
apr_bucket_brigade *bb;
|
|
ap_filter_t *f;
|
|
|
|
if (!c->pending_filters) {
|
|
return DECLINED;
|
|
}
|
|
|
|
bb = ap_reuse_brigade_from_pool("ap_fop_bb", c->pool,
|
|
c->bucket_alloc);
|
|
|
|
/* Flush outer most filters first for ap_filter_should_yield(f->next)
|
|
* to be relevant in the previous ones (e.g. ap_request_core_filter()
|
|
* won't pass its buckets if its next filters yield already).
|
|
*/
|
|
for (f = APR_RING_LAST(c->pending_filters);
|
|
f != APR_RING_SENTINEL(c->pending_filters, ap_filter_t, pending);
|
|
f = APR_RING_PREV(f, pending)) {
|
|
if (f->frec->direction == AP_FILTER_OUTPUT && f->bb
|
|
&& !APR_BRIGADE_EMPTY(f->bb)) {
|
|
apr_status_t rv;
|
|
|
|
rv = ap_pass_brigade(f, bb);
|
|
apr_brigade_cleanup(bb);
|
|
|
|
if (rv != APR_SUCCESS) {
|
|
ap_log_cerror(APLOG_MARK, APLOG_DEBUG, rv, c, APLOGNO(00470)
|
|
"write failure in '%s' output filter", f->frec->name);
|
|
return rv;
|
|
}
|
|
|
|
if (f->bb && !APR_BRIGADE_EMPTY(f->bb)) {
|
|
return OK;
|
|
}
|
|
}
|
|
}
|
|
|
|
return DECLINED;
|
|
}
|
|
|
|
AP_DECLARE_NONSTD(int) ap_filter_input_pending(conn_rec *c)
|
|
{
|
|
ap_filter_t *f;
|
|
|
|
if (!c->pending_filters) {
|
|
return DECLINED;
|
|
}
|
|
|
|
for (f = APR_RING_LAST(c->pending_filters);
|
|
f != APR_RING_SENTINEL(c->pending_filters, ap_filter_t, pending);
|
|
f = APR_RING_PREV(f, pending)) {
|
|
if (f->frec->direction == AP_FILTER_INPUT && f->bb) {
|
|
apr_bucket *e = APR_BRIGADE_FIRST(f->bb);
|
|
|
|
/* if there is at least one non-morphing bucket
|
|
* in place, then we have data pending
|
|
*/
|
|
if (e != APR_BRIGADE_SENTINEL(f->bb)
|
|
&& e->length != (apr_size_t)(-1)) {
|
|
return OK;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return DECLINED;
|
|
}
|
|
|
|
AP_DECLARE_NONSTD(apr_status_t) ap_filter_flush(apr_bucket_brigade *bb,
|
|
void *ctx)
|
|
{
|
|
ap_filter_t *f = ctx;
|
|
apr_status_t rv;
|
|
|
|
rv = ap_pass_brigade(f, bb);
|
|
|
|
/* Before invocation of the flush callback, apr_brigade_write et
|
|
* al may place transient buckets in the brigade, which will fall
|
|
* out of scope after returning. Empty the brigade here, to avoid
|
|
* issues with leaving such buckets in the brigade if some filter
|
|
* fails and leaves a non-empty brigade. */
|
|
apr_brigade_cleanup(bb);
|
|
|
|
return rv;
|
|
}
|
|
|
|
AP_DECLARE(apr_status_t) ap_fflush(ap_filter_t *f, apr_bucket_brigade *bb)
|
|
{
|
|
apr_bucket *b;
|
|
|
|
b = apr_bucket_flush_create(f->c->bucket_alloc);
|
|
APR_BRIGADE_INSERT_TAIL(bb, b);
|
|
return ap_pass_brigade(f, bb);
|
|
}
|
|
|
|
AP_DECLARE_NONSTD(apr_status_t) ap_fputstrs(ap_filter_t *f,
|
|
apr_bucket_brigade *bb, ...)
|
|
{
|
|
va_list args;
|
|
apr_status_t rv;
|
|
|
|
va_start(args, bb);
|
|
rv = apr_brigade_vputstrs(bb, ap_filter_flush, f, args);
|
|
va_end(args);
|
|
return rv;
|
|
}
|
|
|
|
AP_DECLARE_NONSTD(apr_status_t) ap_fprintf(ap_filter_t *f,
|
|
apr_bucket_brigade *bb,
|
|
const char *fmt,
|
|
...)
|
|
{
|
|
va_list args;
|
|
apr_status_t rv;
|
|
|
|
va_start(args, fmt);
|
|
rv = apr_brigade_vprintf(bb, ap_filter_flush, f, fmt, args);
|
|
va_end(args);
|
|
return rv;
|
|
}
|
|
AP_DECLARE(void) ap_filter_protocol(ap_filter_t *f, unsigned int flags)
|
|
{
|
|
f->frec->proto_flags = flags ;
|
|
}
|