Files
apache-http-server/server/util_time.c
Stefan Fritsch 70be0f7a07 Add ErrorLogFormat directive for configuring the error log format, including
additional information that is logged once per connection or request.

Add error log IDs for connections and request to allow correlating error log
lines and the corresponding access log entry.


git-svn-id: https://svn.apache.org/repos/asf/httpd/httpd/trunk@992806 13f79535-47bb-0310-9956-ffa450edef68
2010-09-05 15:44:19 +00:00

307 lines
11 KiB
C

/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "util_time.h"
/* Number of characters needed to format the microsecond part of a timestamp.
* Microseconds have 6 digits plus one separator character makes 7.
* */
#define AP_CTIME_USEC_LENGTH 7
/* Length of ISO 8601 date/time */
#define AP_CTIME_COMPACT_LEN 20
/* Cache for exploded values of recent timestamps
*/
struct exploded_time_cache_element {
apr_int64_t t;
apr_time_exp_t xt;
apr_int64_t t_validate; /* please see comments in cached_explode() */
};
/* the "+ 1" is for the current second: */
#define TIME_CACHE_SIZE (AP_TIME_RECENT_THRESHOLD + 1)
/* Note that AP_TIME_RECENT_THRESHOLD is defined to
* be a power of two minus one in util_time.h, so that
* we can replace a modulo operation with a bitwise AND
* when hashing items into a cache of size
* AP_TIME_RECENT_THRESHOLD+1
*/
#define TIME_CACHE_MASK (AP_TIME_RECENT_THRESHOLD)
static struct exploded_time_cache_element exploded_cache_localtime[TIME_CACHE_SIZE];
static struct exploded_time_cache_element exploded_cache_gmt[TIME_CACHE_SIZE];
static apr_status_t cached_explode(apr_time_exp_t *xt, apr_time_t t,
struct exploded_time_cache_element *cache,
int use_gmt)
{
apr_int64_t seconds = apr_time_sec(t);
struct exploded_time_cache_element *cache_element =
&(cache[seconds & TIME_CACHE_MASK]);
struct exploded_time_cache_element cache_element_snapshot;
/* The cache is implemented as a ring buffer. Each second,
* it uses a different element in the buffer. The timestamp
* in the element indicates whether the element contains the
* exploded time for the current second (vs the time
* 'now - AP_TIME_RECENT_THRESHOLD' seconds ago). If the
* cached value is for the current time, we use it. Otherwise,
* we compute the apr_time_exp_t and store it in this
* cache element. Note that the timestamp in the cache
* element is updated only after the exploded time. Thus
* if two threads hit this cache element simultaneously
* at the start of a new second, they'll both explode the
* time and store it. I.e., the writers will collide, but
* they'll be writing the same value.
*/
if (cache_element->t >= seconds) {
/* There is an intentional race condition in this design:
* in a multithreaded app, one thread might be reading
* from this cache_element to resolve a timestamp from
* TIME_CACHE_SIZE seconds ago at the same time that
* another thread is copying the exploded form of the
* current time into the same cache_element. (I.e., the
* first thread might hit this element of the ring buffer
* just as the element is being recycled.) This can
* also happen at the start of a new second, if a
* reader accesses the cache_element after a writer
* has updated cache_element.t but before the writer
* has finished updating the whole cache_element.
*
* Rather than trying to prevent this race condition
* with locks, we allow it to happen and then detect
* and correct it. The detection works like this:
* Step 1: Take a "snapshot" of the cache element by
* copying it into a temporary buffer.
* Step 2: Check whether the snapshot contains consistent
* data: the timestamps at the start and end of
* the cache_element should both match the 'seconds'
* value that we computed from the input time.
* If these three don't match, then the snapshot
* shows the cache_element in the middle of an
* update, and its contents are invalid.
* Step 3: If the snapshot is valid, use it. Otherwise,
* just give up on the cache and explode the
* input time.
*/
memcpy(&cache_element_snapshot, cache_element,
sizeof(struct exploded_time_cache_element));
if ((seconds != cache_element_snapshot.t) ||
(seconds != cache_element_snapshot.t_validate)) {
/* Invalid snapshot */
if (use_gmt) {
return apr_time_exp_gmt(xt, t);
}
else {
return apr_time_exp_lt(xt, t);
}
}
else {
/* Valid snapshot */
memcpy(xt, &(cache_element_snapshot.xt),
sizeof(apr_time_exp_t));
}
}
else {
apr_status_t r;
if (use_gmt) {
r = apr_time_exp_gmt(xt, t);
}
else {
r = apr_time_exp_lt(xt, t);
}
if (r != APR_SUCCESS) {
return r;
}
cache_element->t = seconds;
memcpy(&(cache_element->xt), xt, sizeof(apr_time_exp_t));
cache_element->t_validate = seconds;
}
xt->tm_usec = (int)apr_time_usec(t);
return APR_SUCCESS;
}
AP_DECLARE(apr_status_t) ap_explode_recent_localtime(apr_time_exp_t * tm,
apr_time_t t)
{
return cached_explode(tm, t, exploded_cache_localtime, 0);
}
AP_DECLARE(apr_status_t) ap_explode_recent_gmt(apr_time_exp_t * tm,
apr_time_t t)
{
return cached_explode(tm, t, exploded_cache_gmt, 1);
}
AP_DECLARE(apr_status_t) ap_recent_ctime(char *date_str, apr_time_t t)
{
int len = APR_CTIME_LEN;
return ap_recent_ctime_ex(date_str, t, AP_CTIME_OPTION_NONE, &len);
}
AP_DECLARE(apr_status_t) ap_recent_ctime_ex(char *date_str, apr_time_t t,
int option, int *len)
{
/* ### This code is a clone of apr_ctime(), except that it
* uses ap_explode_recent_localtime() instead of apr_time_exp_lt().
*/
apr_time_exp_t xt;
const char *s;
int real_year;
int needed;
/* Calculate the needed buffer length */
if (option & AP_CTIME_OPTION_COMPACT)
needed = AP_CTIME_COMPACT_LEN;
else
needed = APR_CTIME_LEN;
if (option & AP_CTIME_OPTION_USEC) {
needed += AP_CTIME_USEC_LENGTH;
}
/* Check the provided buffer length */
if (len && *len >= needed) {
*len = needed;
}
else {
if (len != NULL) {
*len = 0;
}
return APR_ENOMEM;
}
/* example without options: "Wed Jun 30 21:49:08 1993" */
/* 123456789012345678901234 */
/* example for compact format: "1993-06-30 21:49:08" */
/* 1234567890123456789 */
ap_explode_recent_localtime(&xt, t);
real_year = 1900 + xt.tm_year;
if (option & AP_CTIME_OPTION_COMPACT) {
int real_month = xt.tm_mon + 1;
*date_str++ = real_year / 1000 + '0';
*date_str++ = real_year % 1000 / 100 + '0';
*date_str++ = real_year % 100 / 10 + '0';
*date_str++ = real_year % 10 + '0';
*date_str++ = '-';
*date_str++ = real_month / 10 + '0';
*date_str++ = real_month % 10 + '0';
*date_str++ = '-';
}
else {
s = &apr_day_snames[xt.tm_wday][0];
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = ' ';
s = &apr_month_snames[xt.tm_mon][0];
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = ' ';
}
*date_str++ = xt.tm_mday / 10 + '0';
*date_str++ = xt.tm_mday % 10 + '0';
*date_str++ = ' ';
*date_str++ = xt.tm_hour / 10 + '0';
*date_str++ = xt.tm_hour % 10 + '0';
*date_str++ = ':';
*date_str++ = xt.tm_min / 10 + '0';
*date_str++ = xt.tm_min % 10 + '0';
*date_str++ = ':';
*date_str++ = xt.tm_sec / 10 + '0';
*date_str++ = xt.tm_sec % 10 + '0';
if (option & AP_CTIME_OPTION_USEC) {
int div;
int usec = (int)xt.tm_usec;
*date_str++ = '.';
for (div=100000; div>0; div=div/10) {
*date_str++ = usec / div + '0';
usec = usec % div;
}
}
if (!(option & AP_CTIME_OPTION_COMPACT)) {
*date_str++ = ' ';
*date_str++ = real_year / 1000 + '0';
*date_str++ = real_year % 1000 / 100 + '0';
*date_str++ = real_year % 100 / 10 + '0';
*date_str++ = real_year % 10 + '0';
}
*date_str++ = 0;
return APR_SUCCESS;
}
AP_DECLARE(apr_status_t) ap_recent_rfc822_date(char *date_str, apr_time_t t)
{
/* ### This code is a clone of apr_rfc822_date(), except that it
* uses ap_explode_recent_gmt() instead of apr_time_exp_gmt().
*/
apr_time_exp_t xt;
const char *s;
int real_year;
ap_explode_recent_gmt(&xt, t);
/* example: "Sat, 08 Jan 2000 18:31:41 GMT" */
/* 12345678901234567890123456789 */
s = &apr_day_snames[xt.tm_wday][0];
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = ',';
*date_str++ = ' ';
*date_str++ = xt.tm_mday / 10 + '0';
*date_str++ = xt.tm_mday % 10 + '0';
*date_str++ = ' ';
s = &apr_month_snames[xt.tm_mon][0];
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = *s++;
*date_str++ = ' ';
real_year = 1900 + xt.tm_year;
/* This routine isn't y10k ready. */
*date_str++ = real_year / 1000 + '0';
*date_str++ = real_year % 1000 / 100 + '0';
*date_str++ = real_year % 100 / 10 + '0';
*date_str++ = real_year % 10 + '0';
*date_str++ = ' ';
*date_str++ = xt.tm_hour / 10 + '0';
*date_str++ = xt.tm_hour % 10 + '0';
*date_str++ = ':';
*date_str++ = xt.tm_min / 10 + '0';
*date_str++ = xt.tm_min % 10 + '0';
*date_str++ = ':';
*date_str++ = xt.tm_sec / 10 + '0';
*date_str++ = xt.tm_sec % 10 + '0';
*date_str++ = ' ';
*date_str++ = 'G';
*date_str++ = 'M';
*date_str++ = 'T';
*date_str++ = 0;
return APR_SUCCESS;
}