Files
apache-http-server/server/mpm_unix.c
Yann Ylavic a16360a61f core, MPMs unix: follow up to r1809881.
Deregister all hooks first (in pre_cleanup), by doing it last we could still
have had them run when DSOs were unloaded.

Likewise, avoid double faults when handling fatal signals by restoring the
default handler before pconf is cleared (we can't ap_log_error there).

Finally, we need to ignore sig_term/restart (do nothing) when the main
process is exiting (i.e. ap_pglobal is destroyed), since retained_data are
freed.

Aimed to fix all faults in PR 61558.



git-svn-id: https://svn.apache.org/repos/asf/httpd/httpd/trunk@1809973 13f79535-47bb-0310-9956-ffa450edef68
2017-09-28 11:08:09 +00:00

1108 lines
32 KiB
C

/* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* The purpose of this file is to store the code that MOST mpm's will need
* this does not mean a function only goes into this file if every MPM needs
* it. It means that if a function is needed by more than one MPM, and
* future maintenance would be served by making the code common, then the
* function belongs here.
*
* This is going in src/main because it is not platform specific, it is
* specific to multi-process servers, but NOT to Unix. Which is why it
* does not belong in src/os/unix
*/
#ifndef WIN32
#include "apr.h"
#include "apr_thread_proc.h"
#include "apr_signal.h"
#include "apr_strings.h"
#define APR_WANT_STRFUNC
#include "apr_want.h"
#include "apr_getopt.h"
#include "apr_optional.h"
#include "apr_allocator.h"
#include "httpd.h"
#include "http_config.h"
#include "http_core.h"
#include "http_log.h"
#include "http_main.h"
#include "mpm_common.h"
#include "ap_mpm.h"
#include "ap_listen.h"
#include "scoreboard.h"
#include "util_mutex.h"
#ifdef HAVE_PWD_H
#include <pwd.h>
#endif
#ifdef HAVE_GRP_H
#include <grp.h>
#endif
#if APR_HAVE_UNISTD_H
#include <unistd.h>
#endif
/* we know core's module_index is 0 */
#undef APLOG_MODULE_INDEX
#define APLOG_MODULE_INDEX AP_CORE_MODULE_INDEX
typedef enum {
DO_NOTHING,
SEND_SIGTERM,
SEND_SIGTERM_NOLOG,
SEND_SIGKILL,
GIVEUP
} action_t;
typedef struct extra_process_t {
struct extra_process_t *next;
pid_t pid;
ap_generation_t gen;
} extra_process_t;
static extra_process_t *extras;
AP_DECLARE(void) ap_register_extra_mpm_process(pid_t pid, ap_generation_t gen)
{
extra_process_t *p = (extra_process_t *)ap_malloc(sizeof(extra_process_t));
p->next = extras;
p->pid = pid;
p->gen = gen;
extras = p;
}
AP_DECLARE(int) ap_unregister_extra_mpm_process(pid_t pid, ap_generation_t *old_gen)
{
extra_process_t *cur = extras;
extra_process_t *prev = NULL;
while (cur && cur->pid != pid) {
prev = cur;
cur = cur->next;
}
if (cur) {
if (prev) {
prev->next = cur->next;
}
else {
extras = cur->next;
}
*old_gen = cur->gen;
free(cur);
return 1; /* found */
}
else {
/* we don't know about any such process */
return 0;
}
}
static int reclaim_one_pid(pid_t pid, action_t action)
{
apr_proc_t proc;
apr_status_t waitret;
apr_exit_why_e why;
int status;
/* Ensure pid sanity. */
if (pid < 1) {
return 1;
}
proc.pid = pid;
waitret = apr_proc_wait(&proc, &status, &why, APR_NOWAIT);
if (waitret != APR_CHILD_NOTDONE) {
if (waitret == APR_CHILD_DONE)
ap_process_child_status(&proc, why, status);
return 1;
}
switch(action) {
case DO_NOTHING:
break;
case SEND_SIGTERM:
/* ok, now it's being annoying */
ap_log_error(APLOG_MARK, APLOG_WARNING,
0, ap_server_conf, APLOGNO(00045)
"child process %" APR_PID_T_FMT
" still did not exit, "
"sending a SIGTERM",
pid);
/* FALLTHROUGH */
case SEND_SIGTERM_NOLOG:
kill(pid, SIGTERM);
break;
case SEND_SIGKILL:
ap_log_error(APLOG_MARK, APLOG_ERR,
0, ap_server_conf, APLOGNO(00046)
"child process %" APR_PID_T_FMT
" still did not exit, "
"sending a SIGKILL",
pid);
kill(pid, SIGKILL);
break;
case GIVEUP:
/* gave it our best shot, but alas... If this really
* is a child we are trying to kill and it really hasn't
* exited, we will likely fail to bind to the port
* after the restart.
*/
ap_log_error(APLOG_MARK, APLOG_ERR,
0, ap_server_conf, APLOGNO(00047)
"could not make child process %" APR_PID_T_FMT
" exit, "
"attempting to continue anyway",
pid);
break;
}
return 0;
}
AP_DECLARE(void) ap_reclaim_child_processes(int terminate,
ap_reclaim_callback_fn_t *mpm_callback)
{
apr_time_t waittime = 1024 * 16;
int i;
extra_process_t *cur_extra;
int not_dead_yet;
int max_daemons;
apr_time_t starttime = apr_time_now();
/* this table of actions and elapsed times tells what action is taken
* at which elapsed time from starting the reclaim
*/
struct {
action_t action;
apr_time_t action_time;
} action_table[] = {
{DO_NOTHING, 0}, /* dummy entry for iterations where we reap
* children but take no action against
* stragglers
*/
{SEND_SIGTERM_NOLOG, 0}, /* skipped if terminate == 0 */
{SEND_SIGTERM, apr_time_from_sec(3)},
{SEND_SIGTERM, apr_time_from_sec(5)},
{SEND_SIGTERM, apr_time_from_sec(7)},
{SEND_SIGKILL, apr_time_from_sec(9)},
{GIVEUP, apr_time_from_sec(10)}
};
int cur_action; /* index of action we decided to take this
* iteration
*/
int next_action = terminate ? 1 : 2; /* index of first real action */
ap_mpm_query(AP_MPMQ_MAX_DAEMON_USED, &max_daemons);
do {
if (action_table[next_action].action_time > 0) {
apr_sleep(waittime);
/* don't let waittime get longer than 1 second; otherwise, we don't
* react quickly to the last child exiting, and taking action can
* be delayed
*/
waittime = waittime * 4;
if (waittime > apr_time_from_sec(1)) {
waittime = apr_time_from_sec(1);
}
}
/* see what action to take, if any */
if (action_table[next_action].action_time <= apr_time_now() - starttime) {
cur_action = next_action;
++next_action;
}
else {
cur_action = 0; /* nothing to do */
}
/* now see who is done */
not_dead_yet = 0;
for (i = 0; i < max_daemons; ++i) {
process_score *ps = ap_get_scoreboard_process(i);
pid_t pid = ps->pid;
if (pid == 0) {
continue; /* not every scoreboard entry is in use */
}
if (reclaim_one_pid(pid, action_table[cur_action].action)) {
mpm_callback(i, 0, 0);
}
else {
++not_dead_yet;
}
}
cur_extra = extras;
while (cur_extra) {
ap_generation_t old_gen;
extra_process_t *next = cur_extra->next;
if (reclaim_one_pid(cur_extra->pid, action_table[cur_action].action)) {
if (ap_unregister_extra_mpm_process(cur_extra->pid, &old_gen) == 1) {
mpm_callback(-1, cur_extra->pid, old_gen);
}
else {
AP_DEBUG_ASSERT(1 == 0);
}
}
else {
++not_dead_yet;
}
cur_extra = next;
}
#if APR_HAS_OTHER_CHILD
apr_proc_other_child_refresh_all(APR_OC_REASON_RESTART);
#endif
} while (not_dead_yet > 0 &&
action_table[cur_action].action != GIVEUP);
}
AP_DECLARE(void) ap_relieve_child_processes(ap_reclaim_callback_fn_t *mpm_callback)
{
int i;
extra_process_t *cur_extra;
int max_daemons;
ap_mpm_query(AP_MPMQ_MAX_DAEMON_USED, &max_daemons);
/* now see who is done */
for (i = 0; i < max_daemons; ++i) {
process_score *ps = ap_get_scoreboard_process(i);
pid_t pid = ps->pid;
if (pid == 0) {
continue; /* not every scoreboard entry is in use */
}
if (reclaim_one_pid(pid, DO_NOTHING)) {
mpm_callback(i, 0, 0);
}
}
cur_extra = extras;
while (cur_extra) {
ap_generation_t old_gen;
extra_process_t *next = cur_extra->next;
if (reclaim_one_pid(cur_extra->pid, DO_NOTHING)) {
if (ap_unregister_extra_mpm_process(cur_extra->pid, &old_gen) == 1) {
mpm_callback(-1, cur_extra->pid, old_gen);
}
else {
AP_DEBUG_ASSERT(1 == 0);
}
}
cur_extra = next;
}
}
/* Before sending the signal to the pid this function verifies that
* the pid is a member of the current process group; either using
* apr_proc_wait(), where waitpid() guarantees to fail for non-child
* processes; or by using getpgid() directly, if available. */
AP_DECLARE(apr_status_t) ap_mpm_safe_kill(pid_t pid, int sig)
{
#ifndef HAVE_GETPGID
apr_proc_t proc;
apr_status_t rv;
apr_exit_why_e why;
int status;
/* Ensure pid sanity */
if (pid < 1) {
return APR_EINVAL;
}
proc.pid = pid;
rv = apr_proc_wait(&proc, &status, &why, APR_NOWAIT);
if (rv == APR_CHILD_DONE) {
/* The child already died - log the termination status if
* necessary: */
ap_process_child_status(&proc, why, status);
return APR_EINVAL;
}
else if (rv != APR_CHILD_NOTDONE) {
/* The child is already dead and reaped, or was a bogus pid -
* log this either way. */
ap_log_error(APLOG_MARK, APLOG_NOTICE, rv, ap_server_conf, APLOGNO(00048)
"cannot send signal %d to pid %ld (non-child or "
"already dead)", sig, (long)pid);
return APR_EINVAL;
}
#else
pid_t pg;
/* Ensure pid sanity. */
if (pid < 1) {
return APR_EINVAL;
}
pg = getpgid(pid);
if (pg == -1) {
/* Process already dead... */
return errno;
}
if (pg != getpgrp()) {
ap_log_error(APLOG_MARK, APLOG_ALERT, 0, ap_server_conf, APLOGNO(00049)
"refusing to send signal %d to pid %ld outside "
"process group", sig, (long)pid);
return APR_EINVAL;
}
#endif
return kill(pid, sig) ? errno : APR_SUCCESS;
}
AP_DECLARE(int) ap_process_child_status(apr_proc_t *pid, apr_exit_why_e why,
int status)
{
int signum = status;
const char *sigdesc;
/* Child died... if it died due to a fatal error,
* we should simply bail out. The caller needs to
* check for bad rc from us and exit, running any
* appropriate cleanups.
*
* If the child died due to a resource shortage,
* the parent should limit the rate of forking
*/
if (APR_PROC_CHECK_EXIT(why)) {
if (status == APEXIT_CHILDSICK) {
return status;
}
if (status == APEXIT_CHILDFATAL) {
ap_log_error(APLOG_MARK, APLOG_ALERT,
0, ap_server_conf, APLOGNO(00050)
"Child %" APR_PID_T_FMT
" returned a Fatal error... Apache is exiting!",
pid->pid);
return APEXIT_CHILDFATAL;
}
return 0;
}
if (APR_PROC_CHECK_SIGNALED(why)) {
sigdesc = apr_signal_description_get(signum);
switch (signum) {
case SIGTERM:
case SIGHUP:
case AP_SIG_GRACEFUL:
case SIGKILL:
break;
default:
if (APR_PROC_CHECK_CORE_DUMP(why)) {
ap_log_error(APLOG_MARK, APLOG_NOTICE,
0, ap_server_conf, APLOGNO(00051)
"child pid %ld exit signal %s (%d), "
"possible coredump in %s",
(long)pid->pid, sigdesc, signum,
ap_coredump_dir);
}
else {
ap_log_error(APLOG_MARK, APLOG_NOTICE,
0, ap_server_conf, APLOGNO(00052)
"child pid %ld exit signal %s (%d)",
(long)pid->pid, sigdesc, signum);
}
}
}
return 0;
}
AP_DECLARE(apr_status_t) ap_mpm_pod_open(apr_pool_t *p, ap_pod_t **pod)
{
apr_status_t rv;
*pod = apr_palloc(p, sizeof(**pod));
rv = apr_file_pipe_create_ex(&((*pod)->pod_in), &((*pod)->pod_out),
APR_WRITE_BLOCK, p);
if (rv != APR_SUCCESS) {
return rv;
}
apr_file_pipe_timeout_set((*pod)->pod_in, 0);
(*pod)->p = p;
/* close these before exec. */
apr_file_inherit_unset((*pod)->pod_in);
apr_file_inherit_unset((*pod)->pod_out);
return APR_SUCCESS;
}
AP_DECLARE(apr_status_t) ap_mpm_pod_check(ap_pod_t *pod)
{
char c;
apr_size_t len = 1;
apr_status_t rv;
rv = apr_file_read(pod->pod_in, &c, &len);
if ((rv == APR_SUCCESS) && (len == 1)) {
return APR_SUCCESS;
}
if (rv != APR_SUCCESS) {
return rv;
}
return AP_NORESTART;
}
AP_DECLARE(apr_status_t) ap_mpm_pod_close(ap_pod_t *pod)
{
apr_status_t rv;
rv = apr_file_close(pod->pod_out);
if (rv != APR_SUCCESS) {
return rv;
}
rv = apr_file_close(pod->pod_in);
if (rv != APR_SUCCESS) {
return rv;
}
return APR_SUCCESS;
}
static apr_status_t pod_signal_internal(ap_pod_t *pod)
{
apr_status_t rv;
char char_of_death = '!';
apr_size_t one = 1;
rv = apr_file_write(pod->pod_out, &char_of_death, &one);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_WARNING, rv, ap_server_conf, APLOGNO(00053)
"write pipe_of_death");
}
return rv;
}
AP_DECLARE(apr_status_t) ap_mpm_podx_open(apr_pool_t *p, ap_pod_t **pod)
{
apr_status_t rv;
*pod = apr_palloc(p, sizeof(**pod));
rv = apr_file_pipe_create(&((*pod)->pod_in), &((*pod)->pod_out), p);
if (rv != APR_SUCCESS) {
return rv;
}
/*
apr_file_pipe_timeout_set((*pod)->pod_in, 0);
*/
(*pod)->p = p;
/* close these before exec. */
apr_file_inherit_unset((*pod)->pod_in);
apr_file_inherit_unset((*pod)->pod_out);
return APR_SUCCESS;
}
AP_DECLARE(int) ap_mpm_podx_check(ap_pod_t *pod)
{
char c;
apr_os_file_t fd;
int rc;
/* we need to surface EINTR so we'll have to grab the
* native file descriptor and do the OS read() ourselves
*/
apr_os_file_get(&fd, pod->pod_in);
rc = read(fd, &c, 1);
if (rc == 1) {
switch (c) {
case AP_MPM_PODX_RESTART_CHAR:
return AP_MPM_PODX_RESTART;
case AP_MPM_PODX_GRACEFUL_CHAR:
return AP_MPM_PODX_GRACEFUL;
}
}
return AP_MPM_PODX_NORESTART;
}
AP_DECLARE(apr_status_t) ap_mpm_podx_close(ap_pod_t *pod)
{
apr_status_t rv;
rv = apr_file_close(pod->pod_out);
if (rv != APR_SUCCESS) {
return rv;
}
rv = apr_file_close(pod->pod_in);
if (rv != APR_SUCCESS) {
return rv;
}
return rv;
}
static apr_status_t podx_signal_internal(ap_pod_t *pod,
ap_podx_restart_t graceful)
{
apr_status_t rv;
apr_size_t one = 1;
char char_of_death = ' ';
switch (graceful) {
case AP_MPM_PODX_RESTART:
char_of_death = AP_MPM_PODX_RESTART_CHAR;
break;
case AP_MPM_PODX_GRACEFUL:
char_of_death = AP_MPM_PODX_GRACEFUL_CHAR;
break;
case AP_MPM_PODX_NORESTART:
break;
}
rv = apr_file_write(pod->pod_out, &char_of_death, &one);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_WARNING, rv, ap_server_conf, APLOGNO(02404)
"write pipe_of_death");
}
return rv;
}
AP_DECLARE(apr_status_t) ap_mpm_podx_signal(ap_pod_t * pod,
ap_podx_restart_t graceful)
{
return podx_signal_internal(pod, graceful);
}
AP_DECLARE(void) ap_mpm_podx_killpg(ap_pod_t * pod, int num,
ap_podx_restart_t graceful)
{
int i;
apr_status_t rv = APR_SUCCESS;
for (i = 0; i < num && rv == APR_SUCCESS; i++) {
rv = podx_signal_internal(pod, graceful);
}
}
/* This function connects to the server and sends enough data to
* ensure the child wakes up and processes a new connection. This
* permits the MPM to skip the poll when there is only one listening
* socket, because it provides a alternate way to unblock an accept()
* when the pod is used. */
static apr_status_t dummy_connection(ap_pod_t *pod)
{
const char *data;
apr_status_t rv;
apr_socket_t *sock;
apr_pool_t *p;
apr_size_t len;
ap_listen_rec *lp;
/* create a temporary pool for the socket. pconf stays around too long */
rv = apr_pool_create(&p, pod->p);
if (rv != APR_SUCCESS) {
return rv;
}
/* If possible, find a listener which is configured for
* plain-HTTP, not SSL; using an SSL port would either be
* expensive to do correctly (performing a complete SSL handshake)
* or cause log spam by doing incorrectly (simply sending EOF). */
lp = ap_listeners;
while (lp && lp->protocol && ap_cstr_casecmp(lp->protocol, "http") != 0) {
lp = lp->next;
}
if (!lp) {
lp = ap_listeners;
}
rv = apr_socket_create(&sock, lp->bind_addr->family, SOCK_STREAM, 0, p);
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_WARNING, rv, ap_server_conf, APLOGNO(00054)
"get socket to connect to listener");
apr_pool_destroy(p);
return rv;
}
/* on some platforms (e.g., FreeBSD), the kernel won't accept many
* queued connections before it starts blocking local connects...
* we need to keep from blocking too long and instead return an error,
* because the MPM won't want to hold up a graceful restart for a
* long time
*/
rv = apr_socket_timeout_set(sock, apr_time_from_sec(3));
if (rv != APR_SUCCESS) {
ap_log_error(APLOG_MARK, APLOG_WARNING, rv, ap_server_conf, APLOGNO(00055)
"set timeout on socket to connect to listener");
apr_socket_close(sock);
apr_pool_destroy(p);
return rv;
}
rv = apr_socket_connect(sock, lp->bind_addr);
if (rv != APR_SUCCESS) {
int log_level = APLOG_WARNING;
if (APR_STATUS_IS_TIMEUP(rv)) {
/* probably some server processes bailed out already and there
* is nobody around to call accept and clear out the kernel
* connection queue; usually this is not worth logging
*/
log_level = APLOG_DEBUG;
}
ap_log_error(APLOG_MARK, log_level, rv, ap_server_conf, APLOGNO(00056)
"connect to listener on %pI", lp->bind_addr);
apr_pool_destroy(p);
return rv;
}
if (lp->protocol && ap_cstr_casecmp(lp->protocol, "https") == 0) {
/* Send a TLS 1.0 close_notify alert. This is perhaps the
* "least wrong" way to open and cleanly terminate an SSL
* connection. It should "work" without noisy error logs if
* the server actually expects SSLv3/TLSv1. With
* SSLv23_server_method() OpenSSL's SSL_accept() fails
* ungracefully on receipt of this message, since it requires
* an 11-byte ClientHello message and this is too short. */
static const unsigned char tls10_close_notify[7] = {
'\x15', /* TLSPlainText.type = Alert (21) */
'\x03', '\x01', /* TLSPlainText.version = {3, 1} */
'\x00', '\x02', /* TLSPlainText.length = 2 */
'\x01', /* Alert.level = warning (1) */
'\x00' /* Alert.description = close_notify (0) */
};
data = (const char *)tls10_close_notify;
len = sizeof(tls10_close_notify);
}
else /* ... XXX other request types here? */ {
/* Create an HTTP request string. We include a User-Agent so
* that adminstrators can track down the cause of the
* odd-looking requests in their logs. A complete request is
* used since kernel-level filtering may require that much
* data before returning from accept(). */
data = apr_pstrcat(p, "OPTIONS * HTTP/1.0\r\nUser-Agent: ",
ap_get_server_description(),
" (internal dummy connection)\r\n\r\n", NULL);
len = strlen(data);
}
apr_socket_send(sock, data, &len);
apr_socket_close(sock);
apr_pool_destroy(p);
return rv;
}
AP_DECLARE(apr_status_t) ap_mpm_pod_signal(ap_pod_t *pod)
{
apr_status_t rv;
rv = pod_signal_internal(pod);
if (rv != APR_SUCCESS) {
return rv;
}
return dummy_connection(pod);
}
void ap_mpm_pod_killpg(ap_pod_t *pod, int num)
{
int i;
apr_status_t rv = APR_SUCCESS;
/* we don't write anything to the pod here... we assume
* that the would-be reader of the pod has another way to
* see that it is time to die once we wake it up
*
* writing lots of things to the pod at once is very
* problematic... we can fill the kernel pipe buffer and
* be blocked until somebody consumes some bytes or
* we hit a timeout... if we hit a timeout we can't just
* keep trying because maybe we'll never successfully
* write again... but then maybe we'll leave would-be
* readers stranded (a number of them could be tied up for
* a while serving time-consuming requests)
*/
/* Recall: we only worry about IDLE child processes here */
for (i = 0; i < num && rv == APR_SUCCESS; i++) {
if (ap_scoreboard_image->servers[i][0].status != SERVER_READY ||
ap_scoreboard_image->servers[i][0].pid == 0) {
continue;
}
rv = dummy_connection(pod);
}
}
static const char *dash_k_arg = NULL;
static const char *dash_k_arg_noarg = "noarg";
static int send_signal(pid_t pid, int sig)
{
if (kill(pid, sig) < 0) {
ap_log_error(APLOG_MARK, APLOG_STARTUP, errno, NULL, APLOGNO(00057)
"sending signal to server");
return 1;
}
return 0;
}
int ap_signal_server(int *exit_status, apr_pool_t *pconf)
{
apr_status_t rv;
pid_t otherpid;
int running = 0;
const char *status;
*exit_status = 0;
rv = ap_read_pid(pconf, ap_pid_fname, &otherpid);
if (rv != APR_SUCCESS) {
if (!APR_STATUS_IS_ENOENT(rv)) {
ap_log_error(APLOG_MARK, APLOG_STARTUP, rv, NULL, APLOGNO(00058)
"Error retrieving pid file %s", ap_pid_fname);
ap_log_error(APLOG_MARK, APLOG_STARTUP, 0, NULL, APLOGNO(00059)
"Remove it before continuing if it is corrupted.");
*exit_status = 1;
return 1;
}
status = "httpd (no pid file) not running";
}
else {
/* With containerization, httpd may get the same PID at each startup,
* handle it as if it were not running (it obviously can't).
*/
if (otherpid != getpid() && kill(otherpid, 0) == 0) {
running = 1;
status = apr_psprintf(pconf,
"httpd (pid %" APR_PID_T_FMT ") already "
"running", otherpid);
}
else {
status = apr_psprintf(pconf,
"httpd (pid %" APR_PID_T_FMT "?) not running",
otherpid);
}
}
if (!strcmp(dash_k_arg, "start") || dash_k_arg == dash_k_arg_noarg) {
if (running) {
printf("%s\n", status);
return 1;
}
}
if (!strcmp(dash_k_arg, "stop")) {
if (!running) {
printf("%s\n", status);
}
else {
send_signal(otherpid, SIGTERM);
}
return 1;
}
if (!strcmp(dash_k_arg, "restart")) {
if (!running) {
printf("httpd not running, trying to start\n");
}
else {
*exit_status = send_signal(otherpid, SIGHUP);
return 1;
}
}
if (!strcmp(dash_k_arg, "graceful")) {
if (!running) {
printf("httpd not running, trying to start\n");
}
else {
*exit_status = send_signal(otherpid, AP_SIG_GRACEFUL);
return 1;
}
}
if (!strcmp(dash_k_arg, "graceful-stop")) {
if (!running) {
printf("%s\n", status);
}
else {
*exit_status = send_signal(otherpid, AP_SIG_GRACEFUL_STOP);
}
return 1;
}
return 0;
}
void ap_mpm_rewrite_args(process_rec *process)
{
apr_array_header_t *mpm_new_argv;
apr_status_t rv;
apr_getopt_t *opt;
char optbuf[3];
const char *optarg;
mpm_new_argv = apr_array_make(process->pool, process->argc,
sizeof(const char **));
*(const char **)apr_array_push(mpm_new_argv) = process->argv[0];
apr_getopt_init(&opt, process->pool, process->argc, process->argv);
opt->errfn = NULL;
optbuf[0] = '-';
/* option char returned by apr_getopt() will be stored in optbuf[1] */
optbuf[2] = '\0';
while ((rv = apr_getopt(opt, "k:" AP_SERVER_BASEARGS,
optbuf + 1, &optarg)) == APR_SUCCESS) {
switch(optbuf[1]) {
case 'k':
if (!dash_k_arg) {
if (!strcmp(optarg, "start") || !strcmp(optarg, "stop") ||
!strcmp(optarg, "restart") || !strcmp(optarg, "graceful") ||
!strcmp(optarg, "graceful-stop")) {
dash_k_arg = optarg;
break;
}
}
default:
*(const char **)apr_array_push(mpm_new_argv) =
apr_pstrdup(process->pool, optbuf);
if (optarg) {
*(const char **)apr_array_push(mpm_new_argv) = optarg;
}
}
}
/* back up to capture the bad argument */
if (rv == APR_BADCH || rv == APR_BADARG) {
opt->ind--;
}
while (opt->ind < opt->argc) {
*(const char **)apr_array_push(mpm_new_argv) =
apr_pstrdup(process->pool, opt->argv[opt->ind++]);
}
process->argc = mpm_new_argv->nelts;
process->argv = (const char * const *)mpm_new_argv->elts;
if (NULL == dash_k_arg) {
dash_k_arg = dash_k_arg_noarg;
}
APR_REGISTER_OPTIONAL_FN(ap_signal_server);
}
static pid_t parent_pid, my_pid;
static apr_pool_t *pconf;
#if AP_ENABLE_EXCEPTION_HOOK
static int exception_hook_enabled;
const char *ap_mpm_set_exception_hook(cmd_parms *cmd, void *dummy,
const char *arg)
{
const char *err = ap_check_cmd_context(cmd, GLOBAL_ONLY);
if (err != NULL) {
return err;
}
if (cmd->server->is_virtual) {
return "EnableExceptionHook directive not allowed in <VirtualHost>";
}
if (strcasecmp(arg, "on") == 0) {
exception_hook_enabled = 1;
}
else if (strcasecmp(arg, "off") == 0) {
exception_hook_enabled = 0;
}
else {
return "parameter must be 'on' or 'off'";
}
return NULL;
}
static void run_fatal_exception_hook(int sig)
{
ap_exception_info_t ei = {0};
if (exception_hook_enabled &&
geteuid() != 0 &&
my_pid != parent_pid) {
ei.sig = sig;
ei.pid = my_pid;
ap_run_fatal_exception(&ei);
}
}
#endif /* AP_ENABLE_EXCEPTION_HOOK */
/* handle all varieties of core dumping signals */
static void sig_coredump(int sig)
{
apr_filepath_set(ap_coredump_dir, pconf);
apr_signal(sig, SIG_DFL);
#if AP_ENABLE_EXCEPTION_HOOK
run_fatal_exception_hook(sig);
#endif
/* linuxthreads issue calling getpid() here:
* This comparison won't match if the crashing thread is
* some module's thread that runs in the parent process.
* The fallout, which is limited to linuxthreads:
* The special log message won't be written when such a
* thread in the parent causes the parent to crash.
*/
if (getpid() == parent_pid) {
ap_log_error(APLOG_MARK, APLOG_NOTICE,
0, ap_server_conf, APLOGNO(00060)
"seg fault or similar nasty error detected "
"in the parent process");
/* XXX we can probably add some rudimentary cleanup code here,
* like getting rid of the pid file. If any additional bad stuff
* happens, we are protected from recursive errors taking down the
* system since this function is no longer the signal handler GLA
*/
}
kill(getpid(), sig);
/* At this point we've got sig blocked, because we're still inside
* the signal handler. When we leave the signal handler it will
* be unblocked, and we'll take the signal... and coredump or whatever
* is appropriate for this particular Unix. In addition the parent
* will see the real signal we received -- whereas if we called
* abort() here, the parent would only see SIGABRT.
*/
}
AP_DECLARE(apr_status_t) ap_fatal_signal_child_setup(server_rec *s)
{
my_pid = getpid();
return APR_SUCCESS;
}
/* We can't call sig_coredump (ap_log_error) once pconf is destroyed, so
* avoid double faults by restoring each default signal handler on cleanup.
*/
static apr_status_t fatal_signal_cleanup(void *unused)
{
(void)unused;
apr_signal(SIGSEGV, SIG_DFL);
#ifdef SIGBUS
apr_signal(SIGBUS, SIG_DFL);
#endif /* SIGBUS */
#ifdef SIGABORT
apr_signal(SIGABORT, SIG_DFL);
#endif /* SIGABORT */
#ifdef SIGABRT
apr_signal(SIGABRT, SIG_DFL);
#endif /* SIGABRT */
#ifdef SIGILL
apr_signal(SIGILL, SIG_DFL);
#endif /* SIGILL */
#ifdef SIGFPE
apr_signal(SIGFPE, SIG_DFL);
#endif /* SIGFPE */
return APR_SUCCESS;
}
AP_DECLARE(apr_status_t) ap_fatal_signal_setup(server_rec *s,
apr_pool_t *in_pconf)
{
#ifndef NO_USE_SIGACTION
struct sigaction sa;
memset(&sa, 0, sizeof sa);
sigemptyset(&sa.sa_mask);
#if defined(SA_ONESHOT)
sa.sa_flags = SA_ONESHOT;
#elif defined(SA_RESETHAND)
sa.sa_flags = SA_RESETHAND;
#endif
sa.sa_handler = sig_coredump;
if (sigaction(SIGSEGV, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, APLOGNO(00061) "sigaction(SIGSEGV)");
#ifdef SIGBUS
if (sigaction(SIGBUS, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, APLOGNO(00062) "sigaction(SIGBUS)");
#endif
#ifdef SIGABORT
if (sigaction(SIGABORT, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, APLOGNO(00063) "sigaction(SIGABORT)");
#endif
#ifdef SIGABRT
if (sigaction(SIGABRT, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, APLOGNO(00064) "sigaction(SIGABRT)");
#endif
#ifdef SIGILL
if (sigaction(SIGILL, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, APLOGNO(00065) "sigaction(SIGILL)");
#endif
#ifdef SIGFPE
if (sigaction(SIGFPE, &sa, NULL) < 0)
ap_log_error(APLOG_MARK, APLOG_WARNING, errno, s, APLOGNO(00066) "sigaction(SIGFPE)");
#endif
#else /* NO_USE_SIGACTION */
apr_signal(SIGSEGV, sig_coredump);
#ifdef SIGBUS
apr_signal(SIGBUS, sig_coredump);
#endif /* SIGBUS */
#ifdef SIGABORT
apr_signal(SIGABORT, sig_coredump);
#endif /* SIGABORT */
#ifdef SIGABRT
apr_signal(SIGABRT, sig_coredump);
#endif /* SIGABRT */
#ifdef SIGILL
apr_signal(SIGILL, sig_coredump);
#endif /* SIGILL */
#ifdef SIGFPE
apr_signal(SIGFPE, sig_coredump);
#endif /* SIGFPE */
#endif /* NO_USE_SIGACTION */
pconf = in_pconf;
parent_pid = my_pid = getpid();
apr_pool_cleanup_register(pconf, NULL, fatal_signal_cleanup,
fatal_signal_cleanup);
return APR_SUCCESS;
}
#endif /* WIN32 */