Files
MariaDB/sql/opt_histogram_json.cc
Daniel Black 39bb34b9c5 MDEV-36765: JSON Histogram cannot handle >1 byte characters
When json_escape changed[1] to return a -1 in the case of
a character that didn't match the character set, json_unescape_to_string
assumed the -1 meant out of memory and just looped with more
memory.

Problem 1 - json_escape needs to return a different code
so that the different between charset incompatibility and out
of memory needs to occur. This enables json_escape_to_string
to handle the it correctly (ignore and fail seems the best
option).

Problem 2 - JSON histograms need to support character with
where the column json min/maximum value aren't a character
set represented by a single byte.

Problem 2 was previously hidden as ? was a result of the conversion.

As JSON histograms can relate to columns when have an explict
character set, use that and fall back to bin which was the
previous default for non-string columns.

Replaces -1/-2 constants and handling with JSON_ERROR_ILLEGAL_SYMBOL /
JSON_ERROR_OUT_OF_SPACE defines.

[1] regression from: f699010c0f
2025-06-09 21:15:30 +03:00

1210 lines
31 KiB
C++

/*
Copyright (c) 2021, 2022, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA */
#include "mariadb.h"
#include "sql_base.h"
#include "my_json_writer.h"
#include "sql_statistics.h"
#include "opt_histogram_json.h"
/*
@brief
Un-escape a JSON string and save it into *out.
@detail
There's no way to tell how much space is needed for the output.
Start with a small string and increase its size until json_unescape()
succeeds.
*/
static bool json_unescape_to_string(const char *val, int val_len, String* out)
{
// Make sure 'out' has some memory allocated.
if (!out->alloced_length() && out->alloc(128))
return true;
while (1)
{
uchar *buf= (uchar*)out->ptr();
out->length(out->alloced_length());
int res= json_unescape(&my_charset_utf8mb4_bin,
(const uchar*)val,
(const uchar*)val + val_len,
out->charset(),
buf, buf + out->length());
if (res >= 0)
{
out->length(res);
return false; // Ok
}
if (res == JSON_ERROR_ILLEGAL_SYMBOL)
return true; // Invalid character
// We get here if the unescaped string didn't fit into memory.
if (res == JSON_ERROR_OUT_OF_SPACE)
{
if (out->alloc(out->alloced_length()*2))
return true;
}
else
return true; // unknown error
}
}
/*
@brief
Escape a JSON string and save it into *out.
@detail
There's no way to tell how much space is needed for the output.
Start with a small string and increase its size until json_escape()
succeeds.
*/
static int json_escape_to_string(const String *str, String* out)
{
// Make sure 'out' has some memory allocated.
if (!out->alloced_length() && out->alloc(128))
return JSON_ERROR_OUT_OF_SPACE;
while (1)
{
uchar *buf= (uchar*)out->ptr();
out->length(out->alloced_length());
const uchar *str_ptr= (const uchar*)str->ptr();
int res= json_escape(str->charset(),
str_ptr,
str_ptr + str->length(),
&my_charset_utf8mb4_bin,
buf, buf + out->length());
if (res >= 0)
{
out->length(res);
return 0; // Ok
}
if (res != JSON_ERROR_OUT_OF_SPACE)
return res; // Some conversion error
// Out of space error. Try with a bigger buffer
if (out->alloc(out->alloced_length()*2))
return JSON_ERROR_OUT_OF_SPACE;
}
}
class Histogram_json_builder : public Histogram_builder
{
Histogram_json_hb *histogram;
/* Number of buckets in the histogram */
uint hist_width;
/*
Number of rows that we intend to have in the bucket. That is, this is
n_rows_in_table / hist_width
Actual number of rows in the buckets we produce may vary because of
"popular values" and rounding.
*/
longlong bucket_capacity;
/* Number of the buckets already collected */
uint n_buckets_collected;
/*
TRUE means do not try to represent values as UTF-8 text in histogram
storage. Use start_hex/end_hex for all values.
*/
bool force_binary;
/* Data about the bucket we are filling now */
struct CurBucket
{
/* Number of values in the bucket so far. */
longlong size;
/* Number of distinct values in the bucket */
int ndv;
};
CurBucket bucket;
/* Used to create the JSON representation of the histogram. */
Json_writer writer;
public:
Histogram_json_builder(Histogram_json_hb *hist, Field *col, uint col_len,
ha_rows rows)
: Histogram_builder(col, col_len, rows), histogram(hist)
{
/*
When computing number of rows in the bucket, round it UP. This way, we
will not end up with a histogram that has more buckets than intended.
We may end up producing a histogram with fewer buckets than intended, but
this is considered tolerable.
*/
bucket_capacity= (longlong)round(rows2double(records) / histogram->get_width() + 0.5);
if (bucket_capacity == 0)
bucket_capacity= 1;
hist_width= histogram->get_width();
n_buckets_collected= 0;
bucket.ndv= 0;
bucket.size= 0;
force_binary= (col->type() == MYSQL_TYPE_BIT);
writer.start_object();
append_histogram_params();
writer.add_member(Histogram_json_hb::JSON_NAME).start_array();
}
~Histogram_json_builder() override = default;
private:
bool bucket_is_empty() { return bucket.ndv == 0; }
void append_histogram_params()
{
char buf[128];
String str(buf, sizeof(buf), system_charset_info);
THD *thd= current_thd;
timeval tv= {thd->query_start(), 0}; // we do not need microseconds
Timestamp(tv).to_datetime(thd).to_string(&str, 0);
writer.add_member("target_histogram_size").add_ull(hist_width);
writer.add_member("collected_at").add_str(str.ptr());
writer.add_member("collected_by").add_str(server_version);
}
/*
Flush the current bucket out (to JSON output), and set it to be empty.
*/
void finalize_bucket()
{
double fract= (double) bucket.size / records;
writer.add_member("size").add_double(fract);
writer.add_member("ndv").add_ll(bucket.ndv);
writer.end_object();
n_buckets_collected++;
bucket.ndv= 0;
bucket.size= 0;
}
/*
Same as finalize_bucket() but also provide the bucket's end value.
*/
bool finalize_bucket_with_end_value(void *elem)
{
if (append_column_value(elem, false))
return true;
finalize_bucket();
return false;
}
/*
Write the first value group to the bucket.
@param elem The value we are writing
@param cnt The number of such values.
*/
bool start_bucket(void *elem, longlong cnt)
{
DBUG_ASSERT(bucket.size == 0);
writer.start_object();
if (append_column_value(elem, true))
return true;
bucket.ndv= 1;
bucket.size= cnt;
return false;
}
/*
Append the passed value into the JSON writer as string value
*/
bool append_column_value(void *elem, bool is_start)
{
StringBuffer<MAX_FIELD_WIDTH> val;
// Get the text representation of the value
column->store_field_value((uchar*) elem, col_length);
String *str= column->val_str(&val);
// Escape the value for JSON
StringBuffer<MAX_FIELD_WIDTH> escaped_val;
int rc= JSON_ERROR_ILLEGAL_SYMBOL;
if (!force_binary)
{
rc= json_escape_to_string(str, &escaped_val);
if (!rc)
{
writer.add_member(is_start? "start": "end");
writer.add_str(escaped_val.c_ptr_safe());
return false;
}
}
if (rc == JSON_ERROR_ILLEGAL_SYMBOL)
{
escaped_val.set_hex(val.ptr(), val.length());
writer.add_member(is_start? "start_hex": "end_hex");
writer.add_str(escaped_val.c_ptr_safe());
return false;
}
return true;
}
/*
Append a value group of cnt values.
*/
void append_to_bucket(longlong cnt)
{
bucket.ndv++;
bucket.size += cnt;
}
public:
/*
@brief
Add data to the histogram.
@detail
The call signals to add a "value group" of elem_cnt rows, each of which
has the same value that is provided in *elem.
Subsequent next() calls will add values that are greater than the
current one.
@return
0 - OK
*/
int next(void *elem, element_count elem_cnt) override
{
counters.next(elem, elem_cnt);
ulonglong count= counters.get_count();
/*
Ok, we've got a "value group" of elem_cnt identical values.
If we take the values from the value group and put them into
the current bucket, how many values will be left after we've
filled the bucket?
*/
longlong overflow= bucket.size + elem_cnt - bucket_capacity;
/*
Case #1: This value group should be put into a separate bucket, if
A. It fills the current bucket and also fills the next bucket, OR
B. It fills the current bucket, which was empty.
*/
if (overflow >= bucket_capacity || (bucket_is_empty() && overflow >= 0))
{
// Finalize the current bucket
if (!bucket_is_empty())
finalize_bucket();
// Start/end the separate bucket for this value group.
if (start_bucket(elem, elem_cnt))
return 1; // OOM
if (records == count)
{
if (finalize_bucket_with_end_value(elem))
return 1;
}
else
finalize_bucket();
}
else if (overflow >= 0)
{
/*
Case #2: is when Case#1 doesn't hold, but we can still fill the
current bucket.
*/
// If the bucket was empty, it would have been case #1.
DBUG_ASSERT(!bucket_is_empty());
/*
Finalize the current bucket. Put there enough values to make it hold
bucket_capacity values.
*/
append_to_bucket(bucket_capacity - bucket.size);
if (records == count && !overflow)
{
if (finalize_bucket_with_end_value(elem))
return 1;
}
else
finalize_bucket();
if (overflow > 0)
{
// Then, start the new bucket with the remaining values.
if (start_bucket(elem, overflow))
return 1;
}
}
else
{
// Case #3: there's not enough values to fill the current bucket.
if (bucket_is_empty())
{
if (start_bucket(elem, elem_cnt))
return 1;
}
else
append_to_bucket(elem_cnt);
}
if (records == count)
{
// This is the final value group.
if (!bucket_is_empty())
{
if (finalize_bucket_with_end_value(elem))
return 1;
}
}
return 0;
}
/*
@brief
Finalize the creation of histogram
*/
void finalize() override
{
writer.end_array();
writer.end_object();
Binary_string *json_string= (Binary_string *) writer.output.get_string();
histogram->set_json_text(n_buckets_collected,
json_string->c_ptr(),
(size_t)json_string->length());
}
};
Histogram_builder *Histogram_json_hb::create_builder(Field *col, uint col_len,
ha_rows rows)
{
return new Histogram_json_builder(this, col, col_len, rows);
}
void Histogram_json_hb::init_for_collection(MEM_ROOT *mem_root,
Histogram_type htype_arg,
ulonglong size_arg)
{
DBUG_ASSERT(htype_arg == JSON_HB);
size= (size_t)size_arg;
}
/*
A syntax sugar interface to json_string_t
*/
class Json_string
{
json_string_t str;
public:
explicit Json_string(const char *name)
{
json_string_set_str(&str, (const uchar*)name,
(const uchar*)name + strlen(name));
json_string_set_cs(&str, system_charset_info);
}
json_string_t *get() { return &str; }
};
/*
This [partially] saves the JSON parser state and then can rollback the parser
to it.
The goal of this is to be able to make multiple json_key_matches() calls:
Json_saved_parser_state save(je);
if (json_key_matches(je, KEY_NAME_1)) {
...
return;
}
save.restore_to(je);
if (json_key_matches(je, KEY_NAME_2)) {
...
}
This allows one to parse JSON objects where [optional] members come in any
order.
*/
class Json_saved_parser_state
{
const uchar *c_str;
my_wc_t c_next;
int state;
public:
explicit Json_saved_parser_state(const json_engine_t *je) :
c_str(je->s.c_str),
c_next(je->s.c_next),
state(je->state)
{}
void restore_to(json_engine_t *je)
{
je->s.c_str= c_str;
je->s.c_next= c_next;
je->state= state;
}
};
/*
@brief
Read a constant from JSON document and save it in *out.
@detail
The JSON document stores constant in text form, we need to save it in
KeyTupleFormat. String constants in JSON may be escaped.
*/
bool read_bucket_endpoint(json_engine_t *je, Field *field, String *out,
const char **err)
{
if (json_read_value(je))
return true;
if (je->value_type != JSON_VALUE_STRING &&
je->value_type != JSON_VALUE_NUMBER)
{
*err= "String or number expected";
return true;
}
const char* je_value= (const char*)je->value;
if (je->value_type == JSON_VALUE_STRING && je->value_escaped)
{
StringBuffer<128> unescape_buf(field->charset() ? field->charset() : &my_charset_bin);
if (json_unescape_to_string(je_value, je->value_len, &unescape_buf))
{
*err= "Un-escape error";
return true;
}
field->store_text(unescape_buf.ptr(), unescape_buf.length(),
unescape_buf.charset());
}
else
field->store_text(je_value, je->value_len, &my_charset_utf8mb4_bin);
out->alloc(field->pack_length());
uint bytes= field->get_key_image((uchar*)out->ptr(),
field->key_length(), Field::itRAW);
out->length(bytes);
return false;
}
bool read_hex_bucket_endpoint(json_engine_t *je, Field *field, String *out,
const char **err)
{
if (json_read_value(je))
return true;
if (je->value_type != JSON_VALUE_STRING || je->value_escaped ||
(je->value_len & 1))
{
*err= "Expected a hex string";
return true;
}
StringBuffer<128> buf;
for (auto pc= je->value; pc < je->value + je->value_len; pc+=2)
{
int hex_char1= hexchar_to_int(pc[0]);
int hex_char2= hexchar_to_int(pc[1]);
if (hex_char1 == -1 || hex_char2 == -1)
{
*err= "Expected a hex string";
return true;
}
buf.append((hex_char1 << 4) | hex_char2);
}
field->store_text(buf.ptr(), buf.length(), field->charset());
out->alloc(field->pack_length());
uint bytes= field->get_key_image((uchar*)out->ptr(),
field->key_length(), Field::itRAW);
out->length(bytes);
return false;
}
/*
@brief Parse a JSON reprsentation for one histogram bucket
@param je The JSON parser object
@param field Table field we are using histogram (used to convert
endpoints from text representation to binary)
@param total_size INOUT Fraction of the table rows in the buckets parsed so
far.
@param assigned_last_end OUT TRUE<=> The bucket had "end" members, the
function has saved it in
this->last_bucket_end_endp
@param err OUT If function returns 1, this *may* be set to point to text
describing the error.
@detail
Parse a JSON object in this form:
{ "start": "value", "size":nnn.nn, "ndv": nnn, "end": "value"}
Unknown members are ignored.
@return
0 OK
1 Parse Error
-1 EOF
*/
int Histogram_json_hb::parse_bucket(json_engine_t *je, Field *field,
double *total_size,
bool *assigned_last_end,
const char **err)
{
*assigned_last_end= false;
if (json_scan_next(je))
return 1;
if (je->state != JST_VALUE)
{
if (je->state == JST_ARRAY_END)
return -1; // EOF
else
return 1; // An error
}
if (json_scan_next(je) || je->state != JST_OBJ_START)
{
*err= "Expected an object in the buckets array";
return 1;
}
bool have_start= false;
bool have_size= false;
bool have_ndv= false;
CHARSET_INFO *cs;
if (!(cs= field->charset()))
cs= &my_charset_bin;
double size_d;
longlong ndv_ll= 0;
StringBuffer<128> value_buf(cs);
int rc;
while (!(rc= json_scan_next(je)) && je->state != JST_OBJ_END)
{
Json_saved_parser_state save1(je);
Json_string start_str("start");
if (json_key_matches(je, start_str.get()))
{
if (read_bucket_endpoint(je, field, &value_buf, err))
return 1;
have_start= true;
continue;
}
save1.restore_to(je);
Json_string size_str("size");
if (json_key_matches(je, size_str.get()))
{
if (json_read_value(je))
return 1;
const char *size= (const char*)je->value_begin;
char *size_end= (char*)je->value_end;
int conv_err;
size_d= my_strtod(size, &size_end, &conv_err);
if (conv_err)
{
*err= ".size member must be a floating-point value";
return 1;
}
have_size= true;
continue;
}
save1.restore_to(je);
Json_string ndv_str("ndv");
if (json_key_matches(je, ndv_str.get()))
{
if (json_read_value(je))
return 1;
const char *ndv= (const char*)je->value_begin;
char *ndv_end= (char*)je->value_end;
int conv_err;
ndv_ll= my_strtoll10(ndv, &ndv_end, &conv_err);
if (conv_err)
{
*err= ".ndv member must be an integer value";
return 1;
}
have_ndv= true;
continue;
}
save1.restore_to(je);
Json_string end_str("end");
if (json_key_matches(je, end_str.get()))
{
if (read_bucket_endpoint(je, field, &value_buf, err))
return 1;
last_bucket_end_endp.assign(value_buf.ptr(), value_buf.length());
*assigned_last_end= true;
continue;
}
save1.restore_to(je);
// Less common endoints:
Json_string start_hex_str("start_hex");
if (json_key_matches(je, start_hex_str.get()))
{
if (read_hex_bucket_endpoint(je, field, &value_buf, err))
return 1;
have_start= true;
continue;
}
save1.restore_to(je);
Json_string end_hex_str("end_hex");
if (json_key_matches(je, end_hex_str.get()))
{
if (read_hex_bucket_endpoint(je, field, &value_buf, err))
return 1;
last_bucket_end_endp.assign(value_buf.ptr(), value_buf.length());
*assigned_last_end= true;
continue;
}
save1.restore_to(je);
// Some unknown member. Skip it.
if (json_skip_key(je))
return 1;
}
if (rc)
return 1;
if (!have_start)
{
*err= "\"start\" element not present";
return 1;
}
if (!have_size)
{
*err= "\"size\" element not present";
return 1;
}
if (!have_ndv)
{
*err= "\"ndv\" element not present";
return 1;
}
*total_size += size_d;
buckets.push_back({std::string(value_buf.ptr(), value_buf.length()),
*total_size, ndv_ll});
return 0; // Ok, continue reading
}
/*
@brief
Parse the histogram from its on-disk JSON representation
@detail
See opt_histogram_json.h, class Histogram_json_hb for description of the
data format.
@return
false OK
True Error
*/
bool Histogram_json_hb::parse(MEM_ROOT *mem_root, const char *db_name,
const char *table_name, Field *field,
const char *hist_data, size_t hist_data_len)
{
json_engine_t je;
int rc;
const char *err= "JSON parse error";
double total_size;
int end_element;
bool end_assigned;
DBUG_ENTER("Histogram_json_hb::parse");
json_scan_start(&je, &my_charset_utf8mb4_bin,
(const uchar*)hist_data,
(const uchar*)hist_data+hist_data_len);
if (json_scan_next(&je))
goto err;
if (je.state != JST_OBJ_START)
{
err= "Root JSON element must be a JSON object";
goto err;
}
while (1)
{
if (json_scan_next(&je))
goto err;
if (je.state == JST_OBJ_END)
break; // End of object
if (je.state != JST_KEY)
goto err; // Can' really have this: JSON object has keys in it
Json_string hist_key_name(JSON_NAME);
if (json_key_matches(&je, hist_key_name.get()))
{
total_size= 0.0;
end_element= -1;
if (json_scan_next(&je))
goto err;
if (je.state != JST_ARRAY_START)
{
err= "histogram_hb must contain an array";
goto err;
}
while (!(rc= parse_bucket(&je, field, &total_size, &end_assigned, &err)))
{
if (end_assigned && end_element != -1)
end_element= (int)buckets.size();
}
if (rc > 0) // Got error other than EOF
goto err;
}
else
{
// Some unknown member. Skip it.
if (json_skip_key(&je))
return 1;
}
}
if (buckets.size() < 1)
{
err= "Histogram must have at least one bucket";
goto err;
}
if (end_element == -1)
{
buckets.back().start_value= last_bucket_end_endp;
}
else if (end_element < (int)buckets.size())
{
err= ".end is only allowed in the last bucket";
goto err;
}
DBUG_RETURN(false); // Ok
err:
THD *thd= current_thd;
push_warning_printf(thd, Sql_condition::WARN_LEVEL_WARN,
ER_JSON_HISTOGRAM_PARSE_FAILED,
ER_THD(thd, ER_JSON_HISTOGRAM_PARSE_FAILED),
db_name, table_name,
err, (je.s.c_str - (const uchar*)hist_data));
sql_print_error(ER_THD(thd, ER_JSON_HISTOGRAM_PARSE_FAILED),
db_name, table_name, err,
(je.s.c_str - (const uchar*)hist_data));
DBUG_RETURN(true);
}
static
void store_key_image_to_rec_no_null(Field *field, const char *ptr, size_t len)
{
MY_BITMAP *old_map= dbug_tmp_use_all_columns(field->table,
&field->table->write_set);
field->set_key_image((const uchar*)ptr, (uint)len);
dbug_tmp_restore_column_map(&field->table->write_set, old_map);
}
static
double position_in_interval(Field *field, const uchar *key, uint key_len,
const std::string& left, const std::string& right)
{
double res;
if (field->pos_through_val_str())
{
StringBuffer<64> buf1, buf2, buf3;
store_key_image_to_rec_no_null(field, left.data(), left.size());
String *min_str= field->val_str(&buf1);
/*
Make sure we've saved a copy of the data, not a pointer into the
field->ptr. We will overwrite the contents of field->ptr with the next
store_key_image_to_rec_no_null call
*/
if (&buf1 != min_str)
buf1.copy(*min_str);
else
buf1.copy();
store_key_image_to_rec_no_null(field, right.data(), right.size());
String *max_str= field->val_str(&buf2);
/* Same as above */
if (&buf2 != max_str)
buf2.copy(*max_str);
else
buf2.copy();
store_key_image_to_rec_no_null(field, (const char*)key, key_len);
String *midp_str= field->val_str(&buf3);
res= pos_in_interval_for_string(field->charset(),
(const uchar*)midp_str->ptr(), midp_str->length(),
(const uchar*)buf1.ptr(), buf1.length(),
(const uchar*)buf2.ptr(), buf2.length());
}
else
{
store_key_image_to_rec_no_null(field, left.data(), field->key_length());
double min_val_real= field->val_real();
store_key_image_to_rec_no_null(field, right.data(), field->key_length());
double max_val_real= field->val_real();
store_key_image_to_rec_no_null(field, (const char*)key, field->key_length());
double midp_val_real= field->val_real();
res= pos_in_interval_for_double(midp_val_real, min_val_real, max_val_real);
}
return res;
}
double Histogram_json_hb::point_selectivity(Field *field, key_range *endpoint,
double avg_sel)
{
const uchar *key = endpoint->key;
if (field->real_maybe_null())
key++;
// If the value is outside of the histogram's range, this will "clip" it to
// first or last bucket.
int endp_cmp;
int idx= find_bucket(field, key, &endp_cmp);
double sel;
if (buckets[idx].ndv == 1 && (endp_cmp!=0))
{
/*
The bucket has a single value and it doesn't match! Return a very
small value.
*/
sel= 0.0;
}
else
{
/*
We get here when:
* The bucket has one value and this is the value we are looking for.
* The bucket has multiple values. Then, assume
*/
sel= (buckets[idx].cum_fract - get_left_fract(idx)) / buckets[idx].ndv;
}
return sel;
}
double Histogram_json_hb::get_left_fract(int idx)
{
if (!idx)
return 0.0;
else
return buckets[idx-1].cum_fract;
}
std::string& Histogram_json_hb::get_end_value(int idx)
{
if (idx == (int)buckets.size()-1)
return last_bucket_end_endp;
else
return buckets[idx+1].start_value;
}
/*
@param field The table field histogram is for. We don't care about the
field's current value, we only need its virtual functions to
perform various operations
@param min_endp Left endpoint, or NULL if there is none
@param max_endp Right endpoint, or NULL if there is none
@param avg_sel Average selectivity of "field=const" equality for this field
@return
Range selectivity: a number between 0.0 and 1.0.
@note
This may return 0.0. Adjustments to avoid multiply-by-zero meltdown are
made elsewhere.
*/
double Histogram_json_hb::range_selectivity(Field *field, key_range *min_endp,
key_range *max_endp, double avg_sel)
{
double min, max;
if (min_endp && !(field->real_maybe_null() && min_endp->key[0]))
{
bool exclusive_endp= (min_endp->flag == HA_READ_AFTER_KEY)? true: false;
const uchar *min_key= min_endp->key;
uint min_key_len= min_endp->length;
if (field->real_maybe_null())
{
min_key++;
min_key_len--;
}
// Find the leftmost bucket that contains the lookup value.
// (If the lookup value is to the left of all buckets, find bucket #0)
int endp_cmp;
int idx= find_bucket(field, min_key, &endp_cmp);
double sel;
// Special handling for buckets with ndv=1:
if (buckets[idx].ndv == 1)
{
if (endp_cmp < 0)
sel= 0.0;
else if (endp_cmp > 0)
sel= 1.0;
else // endp_cmp == 0.0
sel= (exclusive_endp)? 1.0 : 0.0;
}
else
{
sel= position_in_interval(field, min_key, min_key_len,
buckets[idx].start_value,
get_end_value(idx));
}
double left_fract= get_left_fract(idx);
min= left_fract + sel * (buckets[idx].cum_fract - left_fract);
}
else
min= 0.0;
if (max_endp)
{
// The right endpoint cannot be NULL
DBUG_ASSERT(!(field->real_maybe_null() && max_endp->key[0]));
bool inclusive_endp= (max_endp->flag == HA_READ_AFTER_KEY)? true: false;
const uchar *max_key= max_endp->key;
uint max_key_len= max_endp->length;
if (field->real_maybe_null())
{
max_key++;
max_key_len--;
}
int endp_cmp;
int idx= find_bucket(field, max_key, &endp_cmp);
if ((endp_cmp == 0) && !inclusive_endp)
{
/*
The range is "col < $CONST" and we've found a bucket starting with
$CONST.
*/
if (idx > 0)
{
// Move to the previous bucket
endp_cmp= 1;
idx--;
}
else
endp_cmp= -1;
}
double sel;
// Special handling for buckets with ndv=1:
if (buckets[idx].ndv == 1)
{
if (endp_cmp < 0)
sel= 0.0;
else if (endp_cmp > 0)
sel= 1.0;
else // endp_cmp == 0.0
sel= inclusive_endp? 1.0 : 0.0;
}
else
{
sel= position_in_interval(field, max_key, max_key_len,
buckets[idx].start_value,
get_end_value(idx));
}
double left_fract= get_left_fract(idx);
max= left_fract + sel * (buckets[idx].cum_fract - left_fract);
}
else
max= 1.0;
if (min > max)
{
/*
This can happen due to rounding errors.
What is the acceptable error size? Json_writer::add_double() uses
%.11lg format. This gives 9 digits after the dot. A histogram may have
hundreds of buckets, let's multiply the error by 1000. 9-3=6
*/
DBUG_ASSERT(max < min + 1e-6);
max= min;
}
return max - min;
}
void Histogram_json_hb::serialize(Field *field)
{
field->store(json_text.data(), json_text.size(), &my_charset_bin);
}
#ifndef DBUG_OFF
static int SGN(int x)
{
if (!x)
return 0;
return (x < 0)? -1 : 1;
}
#endif
/*
@brief
Find the leftmost histogram bucket such that "lookup_val >= start_value".
@param field Field object (used to do value comparisons)
@param lookup_val The lookup value in KeyTupleFormat.
@param cmp OUT How the lookup_val compares to found_bucket.left_bound:
0 - lookup_val == bucket.left_bound
>0 - lookup_val > bucket.left_bound (the most typical)
<0 - lookup_val < bucket.left_bound. This can only happen
for the first bucket, for all other buckets we would just
pick the previous bucket and have cmp>=0.
@return
The bucket index
*/
int Histogram_json_hb::find_bucket(const Field *field, const uchar *lookup_val,
int *cmp)
{
int res;
int low= 0;
int high= (int)buckets.size() - 1;
*cmp= 1; // By default, (bucket[retval].start_value < *lookup_val)
while (low + 1 < high)
{
int middle= (low + high) / 2;
res= field->key_cmp((uchar*)buckets[middle].start_value.data(), lookup_val);
if (!res)
{
*cmp= res;
low= middle;
goto end;
}
else if (res < 0)
low= middle;
else //res > 0
high= middle;
}
/*
If low and high were assigned a value in the above loop and we got here,
then the following holds:
bucket[low].start_value < lookup_val < bucket[high].start_value
Besides that, there are two special cases: low=0 and high=last_bucket.
Handle them below.
*/
if (low == 0)
{
res= field->key_cmp(lookup_val, (uchar*)buckets[0].start_value.data());
if (res <= 0)
*cmp= res;
else // res>0, lookup_val > buckets[0].start_value
{
res= field->key_cmp(lookup_val, (uchar*)buckets[high].start_value.data());
if (res >= 0) // lookup_val >= buckets[high].start_value
{
// Move to that bucket
low= high;
*cmp= res;
}
else
*cmp= 1;
}
}
else if (high == (int)buckets.size() - 1)
{
res= field->key_cmp(lookup_val, (uchar*)buckets[high].start_value.data());
if (res >= 0)
{
// Ok the value is in the last bucket.
*cmp= res;
low= high;
}
else
{
// The value is in the 'low' bucket.
res= field->key_cmp(lookup_val, (uchar*)buckets[low].start_value.data());
*cmp= res;
}
}
end:
// Verification: *cmp has correct value
DBUG_ASSERT(SGN(*cmp) ==
SGN(field->key_cmp(lookup_val,
(uchar*)buckets[low].start_value.data())));
// buckets[low] <= lookup_val, with one exception of the first bucket.
DBUG_ASSERT(low == 0 ||
field->key_cmp((uchar*)buckets[low].start_value.data(), lookup_val)<= 0);
// buckets[low+1] > lookup_val, with one exception of the last bucket
DBUG_ASSERT(low == (int)buckets.size()-1 ||
field->key_cmp((uchar*)buckets[low+1].start_value.data(), lookup_val)> 0);
return low;
}